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Abstract

Phase-field simulations have been extensively applied to modeling microstructure evolution during various materials
processes. However, large-scale simulations of three-dimensional (3D) microstructures are still computationally expensive.
Among recent efforts to develop advanced numerical algorithms, the semi-implicit Fourier spectral method is found to be
particularly efficient for systems involving long-range interactions as it is able to utilize the fast Fourier transforms (FFT)
on uniform grids. In this paper, we report our recent progress in making grid points spatially adaptive in the physical
domain via a moving mesh strategy, while maintaining a uniform grid in the computational domain for the spectral imple-
mentation. This approach not only provides more accurate treatment at the interfaces requiring higher resolution, but also
retains the numerical efficiency of the semi-implicit Fourier spectral method. Numerical examples using the new adaptive
moving mesh semi-implicit Fourier spectral method are presented for both two and three space dimensional microstructure
simulations, and they are compared with those obtained by other methods. By maintaining a similar accuracy, the pro-
posed method is shown to be far more efficient than the existing methods for microstructures with small ratios of interfacial
widths to the domain size.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Phase-field method has been applied to modeling mesoscale morphological pattern formation and interface
motion for many different materials processes [1]. It describes a microstructure using a set of spatially depen-
dent field variables. The temporal evolution of the field variables is then governed by systems of time-dependent
Ginzburg–Landau (TDGL) and Cahn–Hilliard (CH) equations. Numerical solutions to the phase-field
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equations yield the temporal and spatial evolution of the microstructures. However, most of the existing phase-
field simulations employ the simple explicit Euler finite-difference scheme which has severe limitations on sim-
ulation time and system size. Consequently, a number of efforts have been made to develop and implement
more advanced numerical algorithms for solving the phase-field equations. In general, existing algorithms
are designed either to increase the numerical stability with respect to time or to achieve higher accuracy in spa-
tial discretization. To achieve high accuracy in space, two types of approaches have been utilized. One is to
employ a spectral representation of a continuous spatial profile of a field variable, e.g. using a Fourier series
for a periodic system, and the other is the adaptive mesh approach in which dense grid points are used in
the interfacial regions where the field variables have large gradients [2]. The spectral method and its semi-impli-
cit implementation have proved particularly efficient for systems in which the morphologies and microstruc-
tures are dominated by long-range elastic interactions [3] while the adaptive mesh method is useful for
microstructures with a very small interfacial width compared to the domain size. However, it is a technical chal-
lenge to efficiently combine the spectral method with an adaptive mesh. The main objective of this paper is to
develop a FFT based spectral implementation of an adaptive mesh method for solving phase-field equations.

To achieve the adaptivity within the framework of Fourier-Spectral Semi-implicit methods, we employ the
moving mesh approach while maintaining the same number of Fourier modes instead of using local refinement
(either by adding extra grid points or enriching Fourier modes). The main idea of the moving mesh approach
is to construct a time-dependent mapping x(n, t) from the computational domain Xc (parameterized by n) to
the physical domain Xp (parameterized by x), such that the representation t(n, t) = u(x(n, t)) of the physical
solution u(x(n, t)) in the computational domain is ‘‘better behaved’’. The criteria for constructing the mapping
are usually expressed as certain variational principles, whose solutions via gradient flow lead to the so-called
moving mesh partial differential equations (MMPDEs) [4–9]. Similar domain or coordinate mapping ideas
have been also used in [10,11] for the adaptive pseudo spectral approximation of reaction-diffusion and com-
bustion problems. Other works on adaptive spectral methods can also be found in [12,13]. It turns out the
semi-implicit Fourier spectral method can also be effectively used to solve the MMPDEs. Taking advantages
of both the moving mesh method and the Fourier Spectral Semi-implicit scheme, larger time steps and larger
system sizes can be used in phase-field simulations to gain computational efficiency without sacrificing the
accuracy. In this paper, we demonstrate the performance of this new approach for the Phase-field equation
in both two and three space dimensions for model problems. Similar improvement can also be expected for
its application to the phase filed simulations of more realistic and complicated problems.

The rest of the paper is organized as follows: we first review the framework for the MMPDEs, and discuss
its Fourier-Spectral implementation, in particular, for the Phase-field equation. We then present numerical
simulation results and make comparisons with other existing methods. Some concluding remarks are given
in the end.

2. Formulations of moving mesh PDEs and applications to Phase-field equations

We first present the variational formulations of the moving-mesh PDEs, then we discuss the applications to
Phase-field equations and their spectral implementation.

2.1. The moving-mesh PDEs

Moving-mesh PDEs can be formulated either on a computational domain [14] or on a physical domain [15].
The former has the advantage of being simple and efficient, though bearing a lesser rigorous derivation. The
latter is derived on a more rigorous basis, but the resulting MMPDE is slightly more complicated. More com-
parisons of the implementation based on the two different approaches are given in [16]. In this paper, we
briefly discuss both approaches, although only the second approach, the physical domain variational formu-
lation (PDVF), is implemented in the numerical simulations.

To explain the idea, we first describe the MMPDE in one dimension. Fig. 1 shows the discretization of a
function in the physical domain and in the computational domain, respectively. One can achieve the high grid
density in the high gradient region in the physical domain (Fig. 1, left) by smoothing the gradient in the com-
putational domain (Fig. 1, right).

W.M. Feng et al. / Journal of Computational Physics 220 (2006) 498–510 499



Download English Version:

https://daneshyari.com/en/article/520979

Download Persian Version:

https://daneshyari.com/article/520979

Daneshyari.com

https://daneshyari.com/en/article/520979
https://daneshyari.com/article/520979
https://daneshyari.com

