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a b s t r a c t

We evaluate numerically the mean-square (MS) radius of gyration and the diffusion coefficient for
topological polymers such as ring, tadpole, double-ring, and caged polymers and catenanes. We consider
caged polymers with any given number of subchains, and catenanes consisting of two linked ring poly-
mers with a fixed linking number. Through Kirkwood’s approximation we evaluate the hydrodynamic
radius, which is proportional to the inverse of the diffusion coefficient, for various topological polymers.
Here we take the statistical averages over configurations of topological polymers constructed through the
quaternionic algorithm, which generates uniform random walks connecting given two points. It gives
ideal chains with no excluded volume. We evaluate numerically the ratio of the square root of the MS
radius of gyration to the hydrodynamic radius for several topological polymers, and show for them that
the ratio decreases as the topology becomes more complex.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Polymers with nontrivial topology such as cyclic polymers have
attracted much interest in various fields of science [1]. Ring
polymers are observed in nature such as circular DNA [2,3].
Topological structures have been discussed in association with
protein folding [4]. Furthermore, naturally occurring proteins
whose ends connected to give a circular topology has been recently
discovered [5]. Due to novel developments in experimental
techniques, ring polymers are now effectively synthesized in
chemistry [6–12]. Moreover, various polymers of topologically
complex structures, which are sometimes called topological
polymers, have been synthesized through chemical reactions and
separated with respect to their hydrodynamic radii through Gel
Permeation Chromatography (GPC). Moreover, 8-shaped polymers,
catenanes and caged polymers, have been synthesized [6,7,13–17].
Hereafter we shall call 8-shaped polymers and catenanes also as
double-ring polymers and linked ring polymers, respectively. It is
thus an interesting theoretical problem to calculate physical
quantities such as the mean-square (MS) radius of gyration and
the hydrodynamic radius for each topological type. Here we
remark that the inverse of the hydrodynamic radius corresponds
to the diffusion coefficient of the polymer.

In the paper we numerically evaluate the MS radius of gyration
and the diffusion coefficient for various topological polymers in
solution such as ring polymers, tadpole polymers, double-ring
polymers, caged polymers and linked ring polymers with a given
linking number. Furthermore, we calculate the diffusion
coefficients of topological polymers through Kirkwood’s approxi-
mation [18]. In order to construct an ensemble of configurations
of a polymer having a nontrivial topological structure, we employ
the quaternionic method for generating random walks [19]. By the
method we can generate an ensemble of a given topological
polymer with N segments in O(N) time, i.e. the computation time
grows linearly with respect to the number of vertices. Furthermore,
the three-dimensional configurations in the ensemble are uniform
along subchains of the topological polymer.

Statistical and dynamical properties of ring polymers in
solution were first studied by Kramers [20]. The drift velocities of
circular DNA in gel electrophoresis were measured in experiments
for various knotted DNA [21]. In theoretical studies based on
models it is found that the drift velocity of a circular DNA in gel
electrophoresis should be proportional to the diffusion coefficient
of the DNA in solution [22]. The diffusion coefficients of knotted
ring polymers have been evaluated through Brownian dynamics
[23]. For other topological polymers, the diffusion or sedimenta-
tion coefficients of double-ring polymers with excluded volume
were theoretically studied by Fukatsu and Kurata [24]. For star
polymers there have been theoretical and experimental studies
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rather extensively [1]. However, it seems that any topological
polymer with loops or closed chains in its structure has not been
extensively studied, yet, except for ring or double-ring polymer.

The theoretical estimates of the MS radius of gyration and the
diffusion coefficient for topological polymers derived in the paper
should be useful for further theoretical studies and experiments.
The present simulation is based on the ideal model of topological
polymers which has no excluded-volume effect. However, we
expect that they should give good approximate values reflecting
various topological structures, and hence they should be consistent
with experimental values at least as first approximation.

The contents of the present paper consist of the following. In
Section 2 we explain numerical methods for constructing random
configurations of topological polymers such as tadpole polymers.
In Section 3 we give the simulation results of some topological
polymers such as ring, tadpole and double-ring polymers as shown
in Fig. 1. In particular, we show that the ratio of the square root of
the MS radius of gyration to the hydrodynamic radius of a given
topological polymer decreases as the topology becomes more
complex. In Section 4 we show the simulation results of caged
polymers. In Section 5 we present the numerical results of caten-
anes (linked ring polymers) with a fixed linking number.

2. Numerical methods

2.1. Quaternionic method for generating random polygons and
random walks

It is not straightforward to construct a large number of three-
dimensional random configurations of topological polymers even
for ring polymers. We construct ensembles of polymers of various
nontrivial topological structures by the quaternionic method for
generating random walks and random polygons [19].

Let us explain the quaternionic method for making closed
random walks, i.e. random polygons [19]. It makes use of the Hopf
map of quaternions. We express a quaternion h in terms of the
basis I, j and k as follows.

h ¼ dþ aiþ bjþ ck: ð2:1Þ

Here a, b, c, and d are real numbers. The square of each basis i, j
and k is given by �1:

i2 ¼ j2 ¼ k2 ¼ �1; ð2:2Þ

and anti-commutation relations are given by

ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j: ð2:3Þ

We can express a given quaternion h in terms of two complex
numbers u and v as follows.

h ¼ uþ vj: ð2:4Þ

Here, complex numbers u and v are expressed in terms of four
real numbers ure, uim, vre and vim as

u ¼ ure þ uimi; v ¼ v re þ v imi: ð2:5Þ

We define the Hopf map by

h! h�ih ¼ ðuþ vjÞ�iðuþ vjÞ: ð2:6Þ

It is straightforward to show that the real part of the Hopf map
is given by zero so that it is given by a pure quaternion.

h�ih ¼ 0þ ðjuj2 � jv j2Þi� Imð2u�vÞjþ Reð2u�vÞk: ð2:7Þ

Here we remark that if the real part of a quaternion is given by
zero, we call it a pure quaternion. For a given pure quaternion
ai + bj + ck we identify the three coefficients a, b and c, as the x,
y and z coordinates of a position vector in the three-dimensional
space.

Let us consider a sequence of pairs of complex numbers (un, vn)
for n = 1, 2, . . . N. We introduce a sequence of quaternions hn =
un + vn j for n = 1, 2, . . . N. Then we have

h�nihn ¼ 0þ ðjunj2 � jvnj2Þi� Imð2u�nvnÞjþ Reð2u�nvnÞk
¼ 0þ aniþ bnjþ cnk: ð2:8Þ

We define bond vectors through the coefficient an, bn and cn for
n = 1, 2, . . ., N, by

~bn ¼ ðan; bn; cnÞ for n ¼ 1;2; . . . ;N: ð2:9Þ

The position vector of the mth vertex of a random polygon is
given by the sum of bond vectors from n = 1 to m.We can show that
the sum of the j-th bond vectors from j = 1 to N vanishes if the N-
dimensional complex vectors of unit length ~u = (u1, u2, . . ., uN) and
~v = (v1, v2, . . ., vN) are orthogonal with respect to the standard
scalar product: (u, v) = u��v, where u� denotes the Hermitian conju-
gate of the N-dimensional complex vector u. For instance, the x
coordinate of the sum of the bond vectors is given by the following:XN

j¼1

ðjujj2 � jv jj2Þ ¼ ð~u;~uÞ � ð~v;~vÞ: ð2:10Þ

Therefore, it vanishes if the N-dimensional complex vectors u
and v have the same length.

In the simulation, we generate two Gaussian N-dimensional
complex vectors u and v, randomly. Applying the Gram-Schmidt ort-
honormalization method to u and v, we derive N-dimensional com-
plex vector v0 such that v0 is perpendicular to u and of unit length. We
then normalize them through multiplying by N as follows.

ð~u;~uÞ ¼ uy � u ¼ N2;

ð~v 0;~v 0Þ ¼ v 0y � v 0 ¼ N2:
ð2:11Þ

Under the normalization conditions (2.11), the MS length of
bond vectors of generated random polygons is given by about 5.90
for N = 100–1000, as shown in Fig. 2. Here we remark that the expec-
tation value of the MS length of bond vectors is rigorously given by
6/(1 + 1/N) (see Ref. [19]) and it is approximated for large N as

6=ð1þ 1=NÞ ffi 6� 6=N: ð2:12Þ

Fig. 1. Ring (left), tadpole (center) and double ring (right).

Fig. 2. Double-logarithmic plot of the deviation 6 � b2 versus the number of
segments N. The number of samples is given by 106. The fitting line is given by 5.5
N�1.
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