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a b s t r a c t

The Finite Element (FE) integration of the coupled consolidation equations requires the
solution of linear symmetric systems with an indefinite saddle point coefficient matrix.
Because of ill-conditioning, the repeated solution in time of the FE equations may be a
major computational issue requiring ad hoc preconditioning strategies to guarantee the
efficient convergence of Krylov subspace methods. In the present paper a Mixed Constraint
Preconditioner (MCP) is developed combining implicit and explicit approximations of the
inverse of the structural sub-matrix, with the performance investigated in some represen-
tative examples. An upper bound of the eigenvalue distance from unity is theoretically pro-
vided in order to give practical indications on how to improve the preconditioner. The MCP
is efficiently implemented into a Krylov subspace method with the performance obtained
in 2D and 3D examples compared to that of Inexact Constraint Preconditioners and Least
Square Logarithm scaled ILUT preconditioners. Two variants of MCP (T-MCP and D-MCP),
developed with the aim at reducing the cost of the preconditioner application, are also
tested. The results show that the MCP variants constitute a reliable and robust approach
for the efficient solution of realistic coupled consolidation FE models, and especially so
in severely ill-conditioned problems.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The time-dependent displacements and fluid pore pressure in porous media are controlled by the consolidation theory.
This was first mathematically described by Biot [1], who coupled the elastic equilibrium equations with a continuity or mass
balance equation to be solved under appropriate boundary and initial flow and loading conditions.

The coupled consolidation equations are typically solved numerically using Finite Elements (FE) in space, thus giving rise
to a system of first-order differential equations the solution to which is addressed by an appropriate time marching scheme.
A major computational issue is the repeated solution in time of the resulting discretized indefinite equations, which can be
generally written as

Ax ¼ b; where A ¼ K BT

B �C

" #
: ð1Þ

Both the sub-matrices K and C are symmetric positive definite (SPD). Denoting with m the number of FE nodes, C 2 Rm�m,
B 2 Rm�n and K 2 Rn�n, where n is equal to 2m or 3m according to the spatial dimension of the problem if the same interpo-
lation is used for displacement and pressure variables.
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The use of iterative solvers is recommended in large size realistic consolidation models. Among them, projection (or con-
jugate gradient-like) methods based on Krylov subspaces for indefinite systems, such as BiCGStab (Bi-Conjugate Gradient
Stabilized [2]), are attracting a growing interest on the grounds of their robustness and efficiency [3–8]. However, the small
time integration steps typically required in the early phase of the analysis may yield a severe ill-conditioning [9], and the
selection of an efficient preconditioning strategy turns out to be a key issue to guarantee and accelerate the convergence.
Note on passing that popular symmetric Krylov solvers, such as MINRES, cannot be generally used for problem (1) because
of the indefiniteness of the preconditioners.

Matrix A in (1) is a classical example of saddle point problem, which is encountered in other fields as well including con-
strained optimization, least squares and Navier–Stokes equations. The constraint preconditioners for Krylov solvers in the
solution of saddle point problems have been studied by a number of authors [10–16]. In most of the above references the
preconditioner is obtained from Awith the (1,1) block K well approximated and replaced by its diagonal. In the coupled con-
solidation problem, however, K is not diagonally dominant and a better approximation is required to ensure convergence.
Bergamaschi et al. [17] have developed both an Exact and an Inexact Constraint Preconditioner (ECP and ICP, respectively)
with the explicit approximation of K�1 provided by the approximate inverse preconditioner AINV [18]. The ICP variant is sug-
gested with the aim at avoiding the need for exactly solving an inner m�m linear system for each preconditioner application
as is required by ECP. In the present paper a Mixed Constraint Preconditioner (MCP) is developed where an implicit and an
explicit approximation of K�1 are provided by an incomplete Cholesky decomposition ILLT and AINV, respectively. Using the
spectral analysis it is shown that most of the eigenvalues of the preconditioned matrix are real positive and, most impor-
tantly, clustered around unity, with the value of the few remaining ones carefully kept under control. Two variants of
MCP are then considered, based on the block structure of the preconditioner. The former, called Triangular MCP (T-MCP),
uses an upper block triangular approximation of MCP, while the latter, denoted as Diagonal MCP (D-MCP) uses the block
diagonal part of MCP only.

The paper is organized as follows. After a brief review of FE coupled consolidation equations, ECP and ICP with their main
properties are revisited. In particular, a theoretical bound is given for the ICP eigenspectrum which helps give some practical
indications as to the implementation of an effective preconditioner. Then, MCP is developed on the basis of the previous the-
oretical findings and experimented with in realistic medium and large size 2D and 3D problems. The MCP performance is
compared to that of more traditional preconditioning techniques, such as ILUT with optimal fill-in degree [19] and a preli-
minary Least Square Logarithm (LSL) scaling [6], and that of ICP. The possible use of the T-MCP and D-MCP variants is finally
discussed with a few remarks closing the paper.

2. Finite element coupled consolidation equations

The system of partial differential equations governing the 3D coupled consolidation process in fully saturated porous
media is derived from the classical Biot’s formulation [1] and successive modifications as:

ðkþ lÞ o�
oi
þ lr2ui ¼ a

op
oi
; i ¼ x; y; z; ð2Þ

1
c
rðkrpÞ ¼ ½/bþ cbrða� /Þ� op

ot
þ a

o�
ot
; ð3Þ

where cbr and b are the volumetric compressibility of solid grains and water, respectively, / is the porosity, k the medium
hydraulic conductivity, � the medium volumetric dilatation, a the Biot coefficient, k and l are the Lamé constant and the
shear modulus of the porous medium, respectively, c is the specific weight of water, r the gradient operator, x, y, z are
the coordinate directions, t is time, and p and ui are the incremental pore pressure and the components of incremental dis-
placement along the i-direction, respectively.

Use of FE in space yields a system of first order differential equations which can be integrated by the Crank–Nicolson
scheme [9]. The resulting linear system has to be repeatedly solved to obtain the transient displacements and pore pressures.
The unsymmetric matrix controlling the solution scheme reads:

A ¼
K=2 �Q=2

QT

Dt H=2þ P
Dt

" #
; ð4Þ

where K, H, P and Q are the elastic stiffness, flow stiffness, flow capacity and flow-stress coupling matrices, respectively.
Matrix A can be readily symmetrized by multiplying the upper set of equations by 2 and the lower set by �Dt, thus obtaining
the sparse 2� 2 block symmetric indefinite matrix (1) where B ¼ �QT and C ¼ DtH=2þ P.

A major difficulty in the repeated solution to system (1) is the likely ill-conditioning of A caused by the large difference in
magnitude between the coefficients of blocks K, B and C. The generic ði; jÞ element of each matrix is related to the hydro-
mechanical properties of the porous medium as follows [9]:

Kij / E; ð5Þ
Bij /

ffiffiffiffi
V
p

; ð6Þ

Cij / Dt
k
c
þ /bV ; ð7Þ
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