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a b s t r a c t

We show how to solve hyperbolic equations numerically on unbounded domains by com-
pactification, thereby avoiding the introduction of an artificial outer boundary. The essen-
tial ingredient is a suitable transformation of the time coordinate in combination with
spatial compactification. We construct a new layer method based on this idea, called the
hyperboloidal layer. The method is demonstrated on numerical tests including the one
dimensional Maxwell equations using finite differences and the three dimensional wave
equation with and without nonlinear source terms using spectral techniques.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic equations typically admit wavelike solutions that oscillate infinitely many times in an unbounded domain.
Take a plane wave in one spatial dimension with frequency x and wave number k,

uðx; tÞ ¼ e2piðkx�xtÞ: ð1Þ
Any mapping of such an oscillatory solution from an infinite domain to a finite domain results in infinitely many oscillations
near the domain boundary, which cannot be resolved numerically. We refer to this phenomenon as the compactification
problem [1]. It is commonly stated that hyperbolic partial differential equations are not compatible with compactification,
and therefore cannot be solved on unbounded domains accurately.

A suitable transformation of the time coordinate, however, leads to a finite number of oscillations in an infinite spatial
domain. Introduce

sðx; tÞ ¼ t � k
x

xþ C
1þ x

� �
; ð2Þ

where C is a finite, positive constant. The plane wave (1) becomes

uðx; sÞ ¼ e�2pi kC=ð1þxÞþxsð Þ: ð3Þ

This representation of the plane wave has only kC cycles along a constant time hypersurface in the unbounded space
x 2 [0,1), and is therefore compatible with compactification.
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The simple idea just described has far reaching consequences. In numerical calculations of hyperbolic equations one typ-
ically truncates the unbounded solution domain by introducing an artificial outer boundary that is not part of the original
problem. Boundary conditions, called transparent, absorbing, radiative, or nonreflecting; are constructed to simulate trans-
parency of this artificial outer boundary. There has been significant developments in the treatment of artificial outer bound-
aries since the 70s, but there is no consensus on an optimal method [2,3]. Especially the construction of boundary conditions
for nonlinear problems is difficult [4]. A successful technique for numerical calculations on unbounded domains resolves this
problem for suitable hyperbolic equations and provides direct quantitative access to asymptotic properties of solutions.

Furthermore, the numerical construction of oscillatory solutions as (3) can be very efficient. Numerical accuracy require-
ments for hyperbolic equations are typically given in terms of numbers of grid points per wavelength. In the example pre-
sented above, the free parameter C determines the number of cycles to be resolved, which may be chosen small. This
suggests that high order numerical discretizations requiring a few points per wavelength can be very efficient in combina-
tion with time transformations of the type (2).

The rest of the paper is devoted to the discussion of time transformation and compactification for hyperbolic equations.
The theoretical part of the paper (Sections 2 and 3) includes a detailed description of the method. We discuss the compac-
tification problem (Section 2.1) and its resolution (Section 2.2) for the advection equation in one dimension. In Section 2.3 we
discuss the wave equation with incoming and outgoing characteristics. We show that the method works also for systems of
equations (Section 2.4). Hyperboloidal layers are introduced in Section 2.5 in analogy to absorbing layers. In multiple spatial
dimensions, compactification is performed in the outgoing direction in combination with rescaling to take care of the asymp-
totic behavior (Sections 3.1 and 3.2). The layer strategy in multiple dimensions allows us to employ arbitrary coordinates in
an inner domain, where sources or scatterers with irregular shapes may be present (Section 3.3). We finish the theoretical
part discussing possible generalizations of the method to nonspherical coordinate systems (Section 3.4). Section 4 includes
numerical experiments in one and three spatial dimensions. In one dimension, we solve the Maxwell equations using finite
difference methods (Section 4.1). A stringent test of the method is the evolution of off-centered initial data for the wave
equation in three spatial dimensions with and without nonlinear source terms (Section 4.2). We conclude with a discussion
and an outlook in Section 5.

2. Compactification in one spatial dimension

2.1. Spatial compactification

Consider the initial boundary value problem for the advection equation

@tuþ @xu ¼ 0; uðx;0Þ ¼ u0ðxÞ; uð0; tÞ ¼ bðtÞ: ð4Þ

The problem is posed on the unbounded domain x 2 [0,1). We transform the infinite domain in x to a finite domain by intro-
ducing the compactifying coordinate q via

qðxÞ ¼ x
1þ x

; xðqÞ ¼ q
1� q

: ð5Þ

The advection equation becomes

@tuþ ð1� qÞ2@qu ¼ 0: ð6Þ

The spatial domain is now given by q 2 [0,1]. Characteristics of this equation are solutions to the ordinary differential
equation

dqðtÞ
dt
¼ �ð1� qðtÞÞ2:

They are plotted in Fig. 1. The compactification problem is clearly visible: the coordinate speed of characteristics approaches
zero near a neighborhood of the point that corresponds to spatial infinity. The advection equation has a finite speed of prop-
agation, therefore its characteristics can not reach infinity in finite time.

A concrete example illustrates the problem for oscillatory solutions. Set initial data u0(x) = sin(2px) and boundary data
b(t) = �sin(2pt) in (4). We obtain the solution

uðx; tÞ ¼ sinð2pðx� tÞÞ; ð7Þ

which reads in the compactifying coordinate (5)

uðq; tÞ ¼ sin 2p q
1� q

� t
� �� �

: ð8Þ

The solution is depicted in Fig. 2 at t = 0 on x 2 [0,10] in the original coordinate and on q 2 [0,10/11] in the compactifying
coordinate. The oscillations can not be resolved in the compactifying coordinate near infinity due to infinite blueshift in spa-
tial frequency.
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