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a b s t r a c t

In this paper, we consider band structure calculations governed by the Helmholtz or
Maxwell equations in piecewise homogeneous periodic materials. Methods based on
boundary integral equations are natural in this context, since they discretize the inter-
face alone and can achieve high order accuracy in complicated geometries. In order to
handle the quasi-periodic conditions which are imposed on the unit cell, the free-space
Green’s function is typically replaced by its quasi-periodic cousin. Unfortunately, the
quasi-periodic Green’s function diverges for families of parameter values that correspond
to resonances of the empty unit cell. Here, we bypass this problem by means of a new
integral representation that relies on the free-space Green’s function alone, adding aux-
iliary layer potentials on the boundary of the unit cell itself. An important aspect of our
method is that by carefully including a few neighboring images, the densities may be
kept smooth and convergence rapid. This framework results in an integral equation of
the second kind, avoids spurious resonances, and achieves spectral accuracy. Because
of our image structure, inclusions which intersect the unit cell walls may be handled
easily and automatically. Our approach is compatible with fast-multipole acceleration,
generalizes easily to three dimensions, and avoids the complication of divergent lattice
sums.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

A number of problems in wave propagation require the calculation of quasi-periodic solutions to the governing partial dif-
ferential equation in the frequency domain. For concreteness, let us consider the two-dimensional (locally isotropic) Max-
well equations in what is called TM-polarization [27,28]. In this case, the Maxwell equations reduce to a scalar Helmholtz
equation

Duðx; yÞ þx2�luðx; yÞ ¼ 0; ð1Þ

where � and l are the permittivity and permeability of the medium, respectively, and we have assumed a time dependence
of e�ixt at frequency x > 0. Given a solution u to (1), it is straightforward to verify that the corresponding electric and mag-
netic fields E,H of the form

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.05.029

* Corresponding author. Tel.: +1 603 646 3178; fax: +1 603 646 1312.
E-mail addresses: ahb@math.dartmouth.edu (A. Barnett), greengard@cims.nyu.edu (L. Greengard).
URLs: http://www.math.dartmouth.edu/~ahb (A. Barnett), http://math.nyu.edu/faculty/greengar (L. Greengard).

Journal of Computational Physics 229 (2010) 6898–6914

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2010.05.029
mailto:ahb@math.dartmouth.edu
mailto:greengard@cims.nyu.edu
http://www.math.dartmouth.edu/~ahb
http://math.nyu.edu/faculty/greengar
http://dx.doi.org/10.1016/j.jcp.2010.05.029
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


Eðx; y; zÞ ¼ Eðx; yÞ ¼ ð0; 0;uðx; yÞÞ

Hðx; y; zÞ ¼ Hðx; yÞ ¼ 1
ixl
ðuyðx; yÞ;�uxðx; yÞ;0Þ

satisfy the full system

r� E ¼ ixlH
r�H ¼ �ix�E:

We are particularly concerned with doubly periodic materials whose refractive index n ¼ ffiffiffiffiffiffi
�lp is piecewise constant (Fig. 1).

Such structures are typical in solid state physics, and are of particular interest at present because of the potential utility of
photonic crystals, where the obstacles are dielectric inclusions with a periodicity on the scale of the wavelength of light [28].
Photonic crystals allow for the control of optical wave propagation in ways impossible in homogeneous media, and are find-
ing a growing range of exciting applications to optical devices, filters [21], sensors, negative-index and meta-materials [36],
and solar cells [7].

We assume that the crystal consists of a periodic array of obstacles (XK) with refractive index n – 1, embedded in a back-
ground material with refractive index n = 1 (denoted by R2 nXK). We then rewrite (1) as a system of Helmholtz equations

ðDþ n2x2Þu ¼ 0 in XK ð2Þ
ðDþx2Þu ¼ 0 in R2 nXK ð3Þ

The expression XK, above, is used to denote the closure of the domain XK (the union of the domain and its boundary @XK). In
this formulation, we must also specify conditions at the material interfaces. These are derived from the required continuity
of the tangential components of the electric and magnetic fields across @XK [27,28], yielding

u;un continuous across @XK ð4Þ

where un = @u/@n is the outward-pointing normal derivative.
The essential feature of doubly periodic microstructures in 2D (or triply periodic microstructures in 3D) is that, at each

frequency, there may exist traveling wave solutions (Bloch waves) propagating in some direction defined by a vector k.

Definition 1. Bloch waves are nontrivial solutions to (2)–(4), that are quasiperiodic, in the sense that

uðxÞ ¼ eik�x~uðxÞ; ð5Þ

where ũ is periodic with the lattice period and k = (kx, ky) is real-valued. k is referred to as the Bloch wavevector.
Bloch waves characterize the bulk optical properties at frequency x; they are analogous to plane waves for free space. If

such waves are absent for all directions k for a given x, then the material is said to have a band-gap [48]. The size of a band-
gap is the length of the frequency interval [x1,x2] in which Bloch waves are absent. Crystal structures with a large band-gap
are ‘optical insulators’ in which defects may be used as guides [28], with the potential for enabling high-speed integrated
optical computing and signal processing.

Definition 2. The band structure of a given crystal geometry is the set of parameter pairs (x, k) for which nontrivial Bloch
waves exist.
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Fig. 1. (a) Problem geometry: an infinite dielectric crystal, in the case where the inclusion X lies within a parallelogram unit cell U. The (shaded) set of all
inclusions in the lattice, denoted by XK in the text, has refractive index n, while the white region has index 1. (b) Sketch of our quasi-periodizing scheme:
we make use of layer potentials on the left (L) and bottom (B) walls, extended to the additional segments shown, which form a skewed ‘tic-tac-toe’ board, as
well as the near neighbor images of X, outlined in solid lines.
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