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a b s t r a c t

We consider variational multiscale (VMS) methods with h-adaptive technique for the sta-
tionary incompressible Navier–Stokes equations. The natural combination of VMS with
adaptive strategy retains the best features of both methods and overcomes many of their
deficits. A reliable a posteriori projection error estimator is derived, which can be com-
puted by two local Gauss integrations at the element level. Finally, some numerical tests
are presented to illustrate the method’s efficiency.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the numerical simulation of incompressible flows, there are still many challenges, such as, how to control the accuracy
of a numerical approximation for the solutions, which may be degraded by the local singularities or the singularity in the
computational domain. Since the work by Babuska and Rheinboldt [1,2], adaptive control based on a posteriori error esti-
mates has become very attractive. Many researchers pay their attention on the field of a posteriori error estimators and have
got lots of good results in the last few decades, for example, [3–5] derive the residual-based a posteriori error estimate.
Deriving a posteriori error estimates for the Stokes equations also has received much attention (see [4,6–8] and so on),
for the Navier–Stokes equation, see [9]. Many people also develop some other methods, like, the estimators based on the
element residual, based on evaluating integrals of the residuals or associated with spatial averages. Besides, the recovery
type error estimators are discussed in [10–16], recently.

Variational multiscale methods are designed to deal with incompressible flow, which define the large scales in a different
way, namely by projection into appropriate subspaces, see Guermond [17], Hughes et al. [18–20] and Layton [21], and other
literatures on VMS methods [21–26]. The idea of two local Gauss integrations has been considered to deal with the varia-
tional multiscale methods (such as [27]).

There are also some researchers trying to combine the adaptive strategy with stabilization method, such as [9,28]. In this
paper, we try to combine VMS with h-adaptive technique, and the combination is particularly efficient and combines the
best algorithmic features of each. Although, a posteriori error estimator is derived based on a projection operator, but by
using two local Gauss integrations, this estimator can be computed easily at the element level. The global upper bound
for the error of the finite element discretization is yielded follows some assumptions.
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The outline of the paper is as follows. Section 2 introduces the governing equations, the notations and some well-known
results used for variational multiscale methods of the Navier–Stokes problem throughout the paper. The posteriori error esti-
mator based on local projection is presented in Section 3, and the equivalent version based on two local Gauss integrations is
derived. In Section 4, some numerical simulations are presented to illustrate the efficiency of the combination of VMS with
adaptive strategy. We finish with a short conclusion in Section 5.

2. Governing equations

We consider the incompressible flows

� mDuþ ðu � rÞuþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ 0 on @X;

ð2:1Þ

where X represents a polyhedral domain in Rd, d = 2,3 with boundary @X, u the velocity vector, p the pressure, f the pre-
scribed body force, and m > 0 the kinematic viscosity, which is inversely proportional to the Reynolds number Re.

The standard variational formulation of (2.1) is given by: find (u,p) 2 (V,S) satisfying

Bðu;p; v; qÞ þ bðu;u;vÞ ¼ ðf ;vÞ 8ðv; qÞ 2 ðV ; SÞ; ð2:2Þ

where

V ¼ H1
0ðXÞ

d and S ¼ L2
0ðXÞ ¼ q 2 L2ðXÞ;

Z
X

qdx ¼ 0
� �

;

Bðu;p; v ; qÞ ¼ mðru;rvÞ � ðr � v ;pÞ þ ðr � u; qÞ; bðu;u; vÞ ¼ ððu � ruÞ;vÞ;

with (�, �) the inner product in L2(X) or in its vector value versions. The norm and seminorm in Hk(X)d are denoted by k � kk

and j � jk, respectively. H1
0ðXÞ will denote the closure of C10 with respect to the norm k � k1. The space V is equipped with the

norm kr � k0 or its equivalent norm k � k1 due to the Poincaré inequality.
For the finite element discretization, let sh be the regular triangulations of the domain X, and define the mesh parameter

h ¼maxT2sh
fdiamðTÞg. We choose the conforming velocity–pressure finite element space (Vh,Sh) � (V,S) satisfying the dis-

crete inf-sup condition

inf
qh2Sh

sup
vh2Vh

ðqh;r � vhÞ
kqhk0krvhk0

P b > 0; ð2:3Þ

where b is independent of h. Here we consider the Taylor–Hood elements (see [29,30]):

Vh ¼ uh 2 CðXÞdjuhjT 2 P2ðTÞd; 8T 2 sh

n o
;

Sh ¼ qh 2 CðXÞjqhjT 2 P1ðTÞ; 8T 2 sh
� �

;

where Pk(T), k = 1,2 is the space of kth-order polynomials on T. We will also need the piecewise constant space

R0 ¼ fvh 2 L2ðXÞjvhjT 2 P0ðTÞ; 8T 2 shg;

where P0(T) is the space of all constant polynomials on T.
Throughout this paper, we shall use the letter C (with or without subscripts) to denote a generic positive constant which

may stand for different values at its different occurrences but that remains independent of the mesh parameter h.
Then, Galerkin finite element discretization of (2.2) is given by: find (uh,ph) 2 (Vh,Sh) satisfying

Bðuh;ph; vh; qhÞ þ bðuh;uh;vhÞ ¼ ðf ; vhÞ 8ðvh; qhÞ 2 ðVh; ShÞ: ð2:4Þ

Because of inequality (2.3), problem (2.4) has a unique solution and the error estimate

krðu� uhÞk0 þ kp� phk0 6 Ch2fkuk3 þ kpk2g; ð2:5Þ

holds provided (u,p) 2 (H3(X)d,H2(X)).
As we know, the Galerkin finite element discretization (2.4) is unstable in the case of higher Reynolds number (or smaller

viscosity). Therefore, stabilization becomes necessary. We firstly consider a common version of VMS methods which was
proposed in [21] for the steady case. We define two spaces L = L2(X)d�d and Lh = R0(X)d�d, the latter is defined on the same
grid as Xh for the velocity deformation tensor. The VMS we consider here is: find (uh,ph) 2 (Vh,Sh) and gh 2 Lh satisfying

ðmþ aÞaðuh; vhÞ � aðgh;rvhÞ þ bðuh;uh;vhÞ � dðph; vhÞ ¼ ðf ;vhÞ 8vh 2 Vh;

dðqh;uhÞ ¼ 0 8qh 2 Sh;

ðgh �ruh; lhÞ ¼ 0 8 lh 2 Lh:

ð2:6Þ
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