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a b s t r a c t

This paper investigates a novel approximate Bayesian inference procedure for numerically
solving inverse problems. A hierarchical formulation which determines automatically the
regularization parameter and the noise level together with the inverse solution is adopted.
The framework is of variational type, and it can deliver the inverse solution and regulari-
zation parameter together with their uncertainties calibrated. It approximates the posteri-
ori probability distribution by separable distributions based on Kullback–Leibler
divergence. Two approximations are derived within the framework, and some theoretical
properties, e.g. variance estimate and consistency, are also provided. Algorithms for their
efficient numerical realization are described, and their convergence properties are also dis-
cussed. Extensions to nonquadratic regularization/nonlinear forward models are also
briefly studied. Numerical results for linear and nonlinear Cauchy-type problems arising
in heat conduction with both smooth and nonsmooth solutions are presented for the pro-
posed method, and compared with that by Markov chain Monte Carlo. The results illustrate
that the variational method can faithfully capture the posteriori distribution in a computa-
tionally efficient way.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in a novel numerical method of Bayesian type for solving inverse problems, especially
those related to heat conduction. Inverse problems arise in many disciplines, such as heat conduction [1], mechanics and
geophysics, and play an important role in revealing the underlying physical mechanisms. Typically, inverse problems are
ill-posed in the sense that the solution lacks a stable dependence on the data. Therefore, their stable and accurate numerical
solutions are very challenging. One of the most popular approaches is Tikhonov regularization, which solves a nearby well-
posed problem and takes its solution as an approximation. Iterative type methods, such as Landweber method and conjugate
gradient method, equipped with a suitable stopping criterion can also be applied.

Bayesian inference approach provides another principled and flexible framework for inverse problems, and has distinct
features over classical deterministic regularization methods. Firstly, it yields an ensemble of inverse solutions consistent
with the given data, and thus it enables uncertainty quantification of a specific solution. This contrasts sharply with
above-mentioned deterministic inverse techniques that content with singling out one solution out of the ensemble. Sec-
ondly, it provides a flexible regularization in that the difficult problem of choosing a regularization parameter is resolved
through hierarchical modeling. Therefore, it has attracted considerable attention in a wide variety of applied disciplines,
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e.g. geophysics [2,3], image processing [4] and transient heat conduction [5–7]. For a comprehensive overview of method-
ological developments, we refer to monographs [2,4].

Hierarchical Bayesian inference has been applied to inverse heat conduction problems [5–8]. The numerical results pre-
sented in these studies are very encouraging in that the regularization parameter, noise level and inverse solution can be
simultaneously estimated with their uncertainties calibrated. Despite the popularity of hierarchical Bayesian formulations
in practical applications and demonstrated performances, the choice of the prior parameter pairs for the hyper-parameters
was carried out in a rather ad hoc manner in existing studies. It remains unclear why these formulations work in practice,
and no guidelines for their choice were available. Also the Bayesian solution, i.e., posterior probability density function
(PPDF) is often numerically sampled, e.g. by Markov chain Monte Carlo (MCMC). However, the MCMC can be computation-
ally expensive, and its convergence might be not easy to diagnose. To circumvent the computational problem, the authors [8]
proposed considering the joint maximum a posteriori (MAP), and derived an augmented Tikhonov (a-Tikhonov for short)
functional that determines the regularization parameter and the noise level along with the solution. Recently some mathe-
matical underpinnings were also provided [9]. However, it yields only one solution like above-mentioned deterministic in-
verse techniques and does not calibrate the associated uncertainties, and thus it is not completely satisfactory from the point
of view of Bayesian analysis.

This paper investigates an alternative framework based on the variational method. The new approach can quantify the
uncertainties of the computed solution, thereby overcoming the drawback of the a-Tikhonov method. The approach was first
developed in machine learning community [10–12], however, its application to inverse problems seems largely unexplored.
This paper will offer some new theoretical results, e.g. its properties in the context of classical inverse theory and conver-
gence properties of the algorithms, to shed some lights on the practical performance. Analyzing the properties of these
approximations also provide one means to interrogate the properties of hierarchical formulations. Some heuristic guidelines
for the choice of prior parameter pairs in hierarchical Bayesian formulations will be derived, and thus the study sheds new
insights on hierarchical Bayesian formulations. The approach is generally applicable to both linear and nonlinear inverse
problems with suitable extensions. We shall examine its applicability on severely ill-posed linear and nonlinear Cauchy
problems, and carry out a detailed comparison of the new method with the true PPDF explored by the MCMC.

The rest of the paper is structured as follows. Fundamentals of Bayesian inference, hierarchical modeling and associated
computational challenge are recalled in Section 2. The variational method for linear inverse problems is described in Section
3, two approximations of the PPDF are derived, and their theoretical properties are analyzed. Algorithms for computing the
approximations together with their convergence properties are also discussed. Two generalizations, i.e., ‘r prior and nonlin-
ear forward models, are briefly discussed in Section 4. Numerical results for the Cauchy-type problems with smooth and
nonsmooth solutions to illustrate their features are presented in Section 5, and compared with that by the MCMC. Finally,
we conclude the paper with Section 6.

2. Bayesian inference approach

This section describes the Bayesian framework for a finite-dimensional linear inverse problem

Hm ¼ d; ð1Þ

where H 2 Rn�m;m 2 Rm and d 2 Rn represent system matrix, sought-for solution and given data, respectively. We shall de-
note d� the noise-free data, and assume that d = d� + x with x being a random vector with mean zero and variance r2

0I. We
shall focus on hyper-parameter treatment within hierarchical models and the associated computational challenge of explor-
ing the posterior state space.

The primary goal of Bayesian inference is to deduce the distribution of the unknown parameters m conditioned on the
data d, i.e., the PPDF p(mjd). According to Bayes’ rule, it is related to d by

pðmjdÞ ¼ pðdjmÞpðmÞR
pðdjmÞpðmÞdm

:

The functions p(djm) and p(m) are known as likelihood function and prior probability density, respectively, and they are two
basic building blocks of Bayesian inference. Intuitively, it provides a mechanism to integrate the prior knowledge p(m) with
the information contained in the data p(djm) to achieve the current state of knowledge, the PPDF p(mjd). The normalizing
constant

R
pðd jmÞpðmÞdm is needed for estimating the credible interval [13], however its computation can be highly non-

trivial, especially in high-dimensions. Fortunately, it is often unnecessary to compute the normalizing constant, e.g. the
MCMC and optimization, and the PPDF p(mjd) may be simply evaluated as

pðmjdÞ / pðdjmÞpðmÞ: ð2Þ

The PPDF p(mjd) constitutes a complete description of the inverse problem, and it contains all the information available
about m. However, it is not directly informative, and various summarizing statistics, e.g. point estimates and credible inter-
vals, have to be computed. Typical point estimates include posterior mean m̂pm and MAP m̂map. However, we caution that
point estimates may not be representative of the PPDF [5,6].
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