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inverse subspace iteration procedure, uses adaptively determined Chebyshev polynomials
to approximate the required application of the inverse operator on the subspace. The
method is robust, converges with acceptable rapidity, and can easily handle operators with
eigenvalues of multiplicity greater than one. Numerical results are shown that demon-
strate the utility of the procedure.
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1. Introduction

Inverse subspace iteration [14] is one of the commonly used procedures for finding the smallest eigenvalues and asso-
ciated eigenvectors of large sparse Hermitian matrices. Inverse iteration is an attractive method because for many prob-
lems the computational cost is proportional to the cost of solving linear systems of equations times the number of desired
eigenvalues and eigenvectors. General dense matrix procedures for finding eigenvalues and eigenvectors of N x N symmet-
ric matrices have an O(N®) computational cost and an O(N?) storage requirement, so that even for modest sized sparse
matrices, one expects inverse iteration to be much more efficient if the solution of the linear systems can be accomplished
in less than O(N?) operations. Moreover, the storage requirements of the method are minimal, the procedure converges
rapidly (especially when a good shift is chosen), and as the method is relatively easy to understand, non-experts in
computational linear algebra are likely to create successful implementations. This latter fact is important, as libraries of
reliable eigensystem routines may not be available for those exploring the use of new computational platforms. Also,
for those who work on more established computational platforms, pre-existing routines for the core computational
tasks—standard operations in computational linear algebra—are likely to be available so that efficient implementation
can be accomplished rather quickly.

Unfortunately, there is a fundamental problem with inverse subspace iteration when it is applied to large sparse matrices.
When shifts are chosen for optimal convergence rates, the procedure requires the solution of singular or nearly singular sys-
tems of equations. If one uses Gaussian elimination to solve these systems, then this singularity actually helps the compu-
tational process [14] (the errors introduced in the solution procedure are in the direction of the desired eigenvectors).
However, when standard iterative methods are used to solve the requisite system of equations the convergence rates are
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typically reduced or the methods may even fail to converge. Additionally, the development of good preconditioners for these
iterative methods is complicated by the singular or nearly singular nature of the systems. Starting with work by [18], and
continuing with [5,17,20] this problem has been studied and procedures for avoiding the difficulties caused by the near sin-
gular behavior have been formulated. However, if one considers an inverse subspace iteration procedure where the requisite
solutions of the linear systems are computed with Krylov subspace based iterative methods [10] such as Conjugate-Gradi-
ents (CG) or generalized minimum residual (GMRES), then one recognizes that the approximations to the eigenvectors are
ultimately just polynomials in the operator applied to a particular collection of vectors. Essentially, when “good” shifts are
used, then the implicit determination of these polynomials by the Krylov iterative method is breaking down. In this paper,
the procedure that we present can be viewed as an implementation of an inverse subspace iteration procedure in which
polynomial transformations are still used, but the manner in which the polynomials are being determined is different from
that associated with a Krylov subspace iterative method. The net result is an efficient method that only requires matrix vec-
tor products, can readily take advantage of multi-processor machines, and has very good reliability properties. In particular,
the method will always converge if the initial vectors have components in the desired eigenvectors and can handle without
difficulty systems with eigenvalues of multiplicity greater than one.

In the next section we review inverse subspace iteration and present results demonstrating the typical problems that
arise when one solves the requisite linear systems using a standard implementation of a Conjugate-Gradient method. In
the third section we describe our procedure in general terms and then provide the details required for its implementation.
In the last section we present computational results. In addition to results of a computation of the eigenvalues of a discret-
ization of a 2D elliptic PDE we present results on the computation of the smallest eigenvalues and their associated eigenvec-
tors of a large (10° x 10°) matrix arising from a Full Configuration Interaction (FCI) treatment of a multi-particle
Schroedinger equation. In this discussion we also describe the multi-processor implementation that was required to obtain
the computational results.

The procedure presented in this paper can be viewed or understood in many different ways. For example, in addition to
seeing it as a variant of inverse subspace iteration, it can also be viewed as a variant of general subspace iteration with
Chebyshev acceleration [14,19]. Our presentation was selected in an effort to motivate and describe the procedure in terms
that would be more readily understood by anyone familiar with inverse iteration—a topic typically covered in undergraduate
numerical analysis classes. The computation of the smallest eigenvalues of large sparse symmetric matrices is of consider-
able interest in quantum chemistry and quantum physics applications, and there are other types of methods that are com-
monly used. In particular, there are procedures [6,11,13,21,22,24] based on Davidson’s method [9] and procedures
[3,8,7,15,16,23] based on the Lanczos method. Of particular interest are the procedures described in [24], where adaptive
Chebyshev filtering is used in conjunction with Davidson’s method and [3] where Chebyshev filtering is used in conjunction
with a Lanczos procedure. Direct comparisons have not been carried out between these other procedures and the one pre-
sented here, but we conjecture that the computational efficiency of the Rayleigh-Chebyshev procedure should be close to
that of a block Lanczos procedure with re-orthogonalization.

In the following, when the task of finding the eigenvalues and eigenvectors of a matrix A is discussed, we will also refer to
A as a linear operator. We do this to emphasize that the method presented here only requires the evaluation of Av for input
vectors v—an explicit matrix representation of A is not required for the procedure.

2. Difficulties with inverse subspace iteration with shift

Inverse subspace iteration with a shift is a power method using the operator (A — ¢)~! applied to a collection of vectors S,
that are orthogonalized at each step. The value ¢ is the “shift”. Approximations to the eigenvalues and eigenvectors closest
to ¢ are obtained from the projection of the operator on S,, e.g. by a Rayleigh-Ritz procedure. The method in its simplest
form is

Inverse subspace iteration with shift

Given an initial collection of M vectors, S,

) Compute V, = (A—ol)"'S,_; by solving (A—al) v, =5 ;. (1)
) Orthonormalize V, = Q,R, by modified Gram-Schmidt.

) Form H, = QTAQ,.

) Diagonalize H, = G10,G,.

)

eigenvalues 0}, i =1...M. If convergence has not been obtained, repeat iteration starting with (a) and v=v + 1.

When the solution of the linear systems (A — &) required to apply (A — ¢)~! can be successfully computed, then the diag-
onal elements 9?‘” of @, converge to the eigenvalues of A closest to ¢. If one seeks the smallest eigenvalues of A and desires
that (A — o) be positive definite to facilitate the iterative solution of the requisite linear equations, then ¢ should be chosen to
be less than the smallest eigenvalue of A. (For a more efficient implementation of the algorithm that avoids the cost asso-
ciated with step (c) see [14].)

If /; are the eigenvalues of A, then for a fixed value of ¢ the standard convergence results [14], show that the approximate
eigenvalues 6" satisfy
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