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a b s t r a c t

The idea of a weighted Sobolev gradient, introduced and applied to singular differential
equations in [1], is extended to a Poisson–Boltzmann system with discontinuous coeffi-
cients. The technique is demonstrated on fully nonlinear and linear forms of the
Poisson– Boltzmann equation in one, two, and three dimensions in a finite difference
setting. A comparison between the weighted gradient and FAS multigrid is given for large
jump size in the coefficient function.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this article, a weighted Sobolev gradient is used as a preconditioner to solve the linear and nonlinear Poisson–Boltz-
mann equation (PBE) with discontinuous coefficient functions. The idea of a weighted gradient, was introduced by Mahavier
in [1] who demonstrated its effectiveness in dealing with linear and nonlinear singular differential equations. Sobolev
gradients were considered as preconditioners for solution of first order and second order differential equations in [2] in
which a one dimensional PBE that arises in semiconductor modeling is considered. An example is also given in [2] of a
problem for which the Sobolev gradient method converges but Newton’s method does not. In this article, we combine the
idea of preconditioning with a weighted Sobolev gradient and present its application to linear and nonlinear PBE. We
investigate how well the weighted Sobolev gradient works for large discontinuities in linear and nonlinear PBE and compare
to unweighted Sobolev gradient and FAS multigrid.

In [3] Neuberger has introduced and developed the Sobolev gradient technique for solutions of differential equations. This
method has proven its usefulness for problems from many fields such as minimization related to Ginzburg–Landau free
energy functionals [4,5], the nonlinear Schrodinger equation [6], superconductors [7,8], applications to Differential Algebraic
Equations [9], image processing problems [10] and optimal control problems [11]. The underlying idea is to formulate prob-
lems in terms of minimizing a functional whose critical points are the desired solutions. The functional that is to be mini-
mized could be a least square functional or energy functional related to the system. Steepest descent is used for the
minimization process.

In Section 2, we discuss the PBE in some detail. In Section 3, we build on [1] and give explanations and justifications for a
weighted gradient and its possible application to differential equations with discontinuous coefficients. In Section 4, we
present problems in the finite difference setting. In Section 5, we give results for numerical test problems for both linear
and nonlinear PBE in finite difference settings. In Section 6, we compare the weighted Sobolev gradient with a nonlinear
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multigrid method. In Section 7, details of the software used are given. Finally, in Section 8 we conclude our results and offer
possible future improvements.

2. Poisson–Boltzmann equation

This section is an introduction to the PBE and its application in estimating the electric potential around biomolecules. The
PBE is an elliptic partial differential equation that models many important phenomena such as charge distributions in semi-
conductor devices [2] and the protein-folding problem. The PBE is being extensively studied to analyze the properties of the
biomolecules in physics and chemistry. Here we present an overview and background of the equation sufficient for this
article, interested readers are referred to [12,13] for more analysis and the derivation of the equation. For material covered
in this section, we heavily relied upon [12].

When a macromolecule such as a protein is immersed in an ionic solution, a thick layer is formed due to the penetration
of solvent ions that prevents contact of the molecule with the ionic solvent. This molecule can be identified with a charged
cluster of atoms. The extended Deybe–Hückle theory [12] is used to model this phenomenon. Fig. 1 shows a sketch of the
Deybe–Hückle model.

The electrostatic potential anywhere in the region X, where X is a cubical region as shown in Fig. 1, is given by the PBE

�r � ðaðxÞruÞ þ �j2ðxÞ sinhðuðxÞÞ ¼ 4pe2
c

jBT

XNm

i¼1

zidðx� xiÞ x 2 X � R3 and uðxÞ ¼ gðxÞ; x 2 C ð1Þ

Our notation follows Holst’s work in his thesis [12]. Here C denotes the boundary of the domain X and g(x) is some boundary
function. ec denotes the charge of electron, T represents the temperature, kB the Boltzmann constant. If qi ¼ ziec represents
the charge at the location xi in the molecular region, zi is the fraction of charge at the location xi. The dielectric e and the
modified Debye–Hückle parameter ~j are piecewise constant functions. If X1,X2 and X3 denote molecular region, exclusion
layer and solvent respectively, the other two coefficients e; ~j and the force term f can be defined below.
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e2 ¼ e3 x 2 X2 [X3

�
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ii. ~j : X # R,
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e3
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j x 2 X3

�
ð3Þ

where j is the Debye–Hückle parameter that depends on the ionic strength Is of the solvent and is given by the for-

mula ð 8pNAe2
c

1000e3kBT Þ
1=2I1=2

s , where NA is Avogadro’s number.

iii. f : X! R,

f ðxÞ ¼ 4pe2
c

jBT

XNm

i¼1

zidðx� xiÞ ð4Þ

where x1; x2; . . . ; xNm 2 X1 denote the charge locations and z1; z2; . . . ; zNm are associated fractional charges respectively.

Fig. 1. A sketch of Debye–Hückle model in 3d.
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