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a b s t r a c t

We present a new cell-centered multi-material arbitrary Lagrangian–Eulerian (ALE)
scheme to solve the compressible gas dynamics equations on two-dimensional unstruc-
tured grid. Our ALE method is of the explicit time-marching Lagrange plus remap type.
Namely, it involves the following three phases: a Lagrangian phase wherein the flow is
advanced using a cell-centered scheme; a rezone phase in which the nodes of the
computational grid are moved to more optimal positions; a cell-centered remap phase
which consists of interpolating conservatively the Lagrangian solution onto the rezoned
grid. The multi-material modeling utilizes either concentration equations for miscible flu-
ids or the Volume Of Fluid (VOF) capability with interface reconstruction for immiscible
fluids. The main original feature of this ALE scheme lies in the introduction of a new mesh
relaxation procedure which keeps the rezoned grid as close as possible to the Lagrangian
one. In this formalism, the rezoned grid is defined as a convex combination between the
Lagrangian grid and the grid resulting from condition number smoothing. This convex
combination is constructed through the use of a scalar parameter which is a scalar function
of the invariants of the Cauchy–Green tensor over the Lagrangian phase. Regarding the cell-
centered remap phase, we employ two classical methods based on a partition of the
rezoned cell in terms of its overlap with the Lagrangian cells. The first one is a simplified
swept face-based method whereas the second one is a cell-intersection-based method.
Our multi-material ALE methodology is assessed through several demanding two-
dimensional tests. The corresponding numerical results provide a clear evidence of the
robustness and the accuracy of this new scheme.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Numerical schemes in compressible fluid dynamics make use of two classical kinematic descriptions: the Lagrangian
description and the Eulerian description. Lagrangian algorithms are characterized by computational cells that move with
fluid velocity. They allow an easy and natural tracking of free surfaces and interfaces between different materials. However,
they suffer from a lack of robustness when they are facing large flow distortions. On the other hand, Eulerian algorithms are
characterized by a fixed computational grid through which fluid moves. They can handle large distortions without any
difficulties. However, the numerical diffusion inherent in advection terms discretization leads to an inaccurate interface
definition and a loss in the resolution of flow details. The arbitrary Lagrangian–Eulerian (ALE) description has been initially
introduced in the seminal paper [22] to solve in a certain extent the shortcomings of purely Lagrangian and purely Eulerian

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.04.019

* Corresponding author.
E-mail address: maire@celia.u-bordeaux1.fr (P.-H. Maire).

Journal of Computational Physics 229 (2010) 5755–5787

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2010.04.019
mailto:maire@celia.u-bordeaux1.fr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


descriptions by combining the best features of both aforementioned approaches. The main feature of the ALE methodology is
to move the computational grid with a prescribed velocity field to improve the accuracy and the robustness of the simula-
tion. ALE methods have been used for several decades to face successfully the difficulties inherent in the simulation of multi-
material fluid flows with large distortions [3,5,43,23,8,15,39,13]. Usually, ALE methods can be implemented in two manners.
The first one, which is termed direct ALE, consists in an unsplit moving mesh discretization of the gas dynamics equations
wherein the grid velocity is typically deduced from boundaries motion [44,36]. In this approach convective terms are solved
directly. The second one, which is the subject of the present paper, is named indirect ALE. The main elements of an indirect
ALE approach are an explicit Lagrangian phase in which the physical variables and grid are updated, a rezoning phase in
which nodes of the Lagrangian grid are moved to improve the geometric quality of the grid and a remapping phase wherein
the physical variables are conservatively interpolated from the Lagrangian grid onto the new rezoned one [40]. We point out
that indirect ALE method encompasses both Lagrangian and Euler approaches. Indeed, when the rezoned mesh coincides
with the initial mesh, indirect ALE algorithm corresponds to an Eulerian algorithm which is termed as Lagrange plus remap
algorithm wherein advection terms are solved through the use of the remapping phase.

This paper aims at presenting a cell-centered indirect ALE algorithm to solve multi-material compressible flows on two-
dimensional unstructured grids with fixed topology. Our Lagrangian phase solves the gas dynamics equations utilizing a
moving mesh cell-centered discretization wherein the physical conservation laws are discretized in a compatible manner
with the nodal velocity so that the geometric conservation law (GCL) is exactly satisfied [13]. Namely, the time rate of change
of a Lagrangian volume is computed consistently with the node motion. This critical requirement is the cornerstone of any
Lagrangian multidimensional scheme. Nowadays, cell-centered finite volume schemes [12,38,37] that fulfill this GCL
requirement seem to be a promising alternative to the usual staggered finite difference discretization [11]. Moreover, these
cell-centered schemes allow straightforward implementation of conservative remapping methods when they are used in the
context of ALE. Here, we are using the high-order cell-centered Lagrangian scheme that has been described in [37]. Let us
recall that the numerical fluxes are determined by means of a node-centered approximate Riemann solver. This discretiza-
tion leads to a conservative and entropy consistent scheme whose high-order extension is derived through the use of gen-
eralized Riemann problem [7,37].

The thermodynamical modeling of multi-material flows in our ALE algorithm is considered through the use of two dif-
ferent approaches. In the first one, the multi-material flow is viewed as a multi-component mixture of miscible fluids where-
in each fluid is characterized by its mass fraction, i.e. concentration. In this modeling, concentration stands for a passive
scalar which allows to track the location of each material inside the flow. The mixture equation of state is obtained using
a pressure–temperature equilibrium assumption. This modeling is quite simple to implement and to use. However, it can
lead to inaccurate results as the numerical diffusion inherent in the concentration remapping may involve spurious numer-
ical mixing. To correct this potential flaw, we have developed another approach which corresponds to the case of immiscible
fluids. This second approach is based on the Volume Of Fluid (VOF) methodology which allows a Lagrangian tracking capa-
bility for material interfaces. Namely, contrary to concentration equations modeling, there is no mass flux between materi-
als. The VOF approach introduces mixed or multi-material cells, which contain more than one material. Each material is
characterized by its volume fraction, i.e. the ratio between the volume occupied by the material and the total volume of
the mixed cell. We note that our implementation is restricted to two materials. The main issue related to mixed cell is define
its evolution during the Lagrangian phase. To this end, we use a closure model that enables us to compute an effective ther-
modynamic state in terms of the thermodynamic states of each material and its related volume fraction. Here, we use the
classical equal strain model [8], knowing that more sophisticated modeling are possible [4,24]. Knowing the volume frac-
tions field, we perform a reconstruction of the interface in each cell by means of a piecewise linear representation which
is obtained extending the well-known Youngs [51] algorithm to unstructured grids.

Essential for successful application of our ALE algorithm is the use of a good mesh rezoning strategy. This is not a
simple task, since one has to balance between various requirements, some of which might seem to be contradictory.
Generally, a proper rezoning strategy should maintain reasonable geometrical quality of the mesh while respecting
the features of the underlying flow imprinted into the mesh deformation during the Lagrangian phase [28]. Since the
objectives of mesh rezoning are close to the objectives of mesh generation, the rezoning strategies for ALE are closely
related to the techniques developed and used by the mesh generation community. Here, we will restrict ourselves to
rezoning by node repositioning, without changing the mesh connectivity. We point out that an original rezoning strat-
egy has recently been developed where the connectivity of the mesh is allowed to change through the use of Voronoi
tessellation. This new approach provides a Reconnection-based arbitrary Lagrangian–Eulerian (ReALE) strategy [34,35]. In
the context of fixed topology, the geometric rezoning can easily be expressed as an optimization problem, where some
mesh quality functional is minimized in order to find suitable mapping from the logical (computational) to the physical
(real) space. Typically the functional contains information about smoothness of the mesh, its orthogonality, etc. A clas-
sical approach was originally proposed by Winslow [49,50] and is still considered to be the standard method. Here, we
are making use of the condition number smoothness functional introduced in [30,29], which is closely related to Win-
slow smoothing, and is widely used on triangular and structured quadrilateral meshes. A generalized approach will be
given, which can be applied to any unstructured meshes. An original relaxation procedure allows to define the rezoned
grid as a convex combination between the Lagrangian grid and the regularized grid, i.e. the grid produced by the con-
dition number smoothing. This convex combination is constructed through the use of an x factor which is expressed in
terms of the invariants of the right Cauchy–Green tensor [9] with respect to the Lagrangian displacement over a time
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