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DPD system becomes singular. We propose two numerical schemes to deal with this sys-

tem - one results in a fully-populated but well-conditioned matrix system, while the other

employs a deflation technique to handle the system in an iterative manner, where the

eigenvalue of —1 corresponding to a rigid-body motion is mapped to zero. The latter iter-
o . . ative scheme is to be preferred, with the possibility of parallel implementations. Some

Dissipative Particle Dynamics . .

Overdamped limit numerical results are presented to verify the two proposed schemes.

Zero-mass system © 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Dissipative Particle Dynamics (DPD) is a particle-based method for simulating hydrodynamic phenomena, originally
derived as a coarse-grained method for molecular dynamics (MD) simulation [1-5]. One salient feature of DPD is that the
method is based on simple pairwise interactions, which allows mean quantities (density, linear momentum, etc.) to satisfy
conservation laws (thus qualifies the method as a particle-based solver for continuum problems). The interparticle forces,
namely conservative, dissipative and random, are functions of relative pairwise positions and velocities in pairs. The method
is particularly powerful for dealing with complex fluid systems, such as colloidal suspensions and polymer solutions, on
physically interesting length and time scales. For example, in simulating colloidal suspensions, a colloidal particle can be
simply modelled by a set of standard but constrained DPD particles located on a rigid surface [6], or by a single DPD particle
with a different set of DPD parameters [7].

It should be pointed out that a DPD fluid is compressible in nature and its dynamic response is rather slow - the Schmidt
number (Sc) is about unity because of the soft interaction between particles in the DPD system. On the other hand, many
practical applications involve incompressible flows that exhibit strongly viscous behaviour at low fluid inertia, (i.e., low
Reynolds number (Re) flows) [8]. Incompressibility is a good approximation in many practical flows at low Mach numbers
(M < 0.3) [9]. For real fluids of physical properties like those of water, the Schmidt number is 0(10%). One effective way to
induce an incompressible slow viscous flow in a DPD fluid and simultaneously enhance its dynamic response is to reduce the
mass of the particles (m). In the limit of m — 0, a strongly overdamped system results, with Re — 0,M — 0 and Sc — oc.
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In the context of Brownian dynamics simulations, the motion of a Brownian particle is governed by a Langevin equation
which also involves viscous friction and fluctuating forces [10]. The highly overdamped case (i.e., viscous limit), in which the
friction is strong enough so that the inertia term may be neglected, has been well studied. In the context of DPD, to our
knowledge, there has been no previous report concerning the overdamped limit. In this study, we examine the DPD equa-
tions, in which inertia terms are ignored. Despite the similar appearances of the DPD and Langevin equations, the mathemat-
ical properties of strongly overdamped systems of the former are fundamentally different from those of the latter. For
example, due to the presence of the pairwise velocities in the governing equations, the DPD system is singular. The aim
of this work is to provide numerical schemes that are able to yield a solution to the DPD system in the limit of m — 0, where
the dynamic response of the DPD fluid becomes fast.

The remainder of the paper is organised as follows. In Section 2, a brief overview of the DPD equations is given. In Section
3, the highly overdamped case of DPD is studied, in which two numerical schemes are proposed to deal with the singularity
of the system. In Section 4, some numerical simulations are carried out to verify the two proposed schemes. Section 5 con-
cludes the paper.

2. DPD equations

The DPD equations can be written as
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wherei= (1,2,---,N),N is the number of particles, m;, r; and v; the mass, position and velocity vector of the ith particle, t the
time, vij = v; — vj, e; = Iy /ry (ry = r; — 1j, 1 = |ry|), a;, 7 and o are constants, and 6; a Gaussian white noise (0; = 6j;) with sto-
chastic properties
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The first term on the right side of (2) is the conservative force, the second the dissipative force and the last the random force.
The equilibrium and detailed balance of the system requires

wo(ry) = (Wa(ry)), (5)
ksT = 7 (6)

where kgT is the Boltzmann temperature (mean kinetic energy of the particles).
In this paper, we consider the commonly used form

we(ry) =1--2, (7)

wolry) = ﬂ)”ﬁ (8)

where 1, is the cutoff radius that limits the range of interaction for the forces. It is noted that r. can be different for different
types of forces.

3. Overdamped limit of DPD

In the limit of my? — 0, Eq. (2) reduces to
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When necessary, we use the superscript k on relevant variables to denote the time level t = t*. Note that this limit is not
equivalent to a steady-state flow assumption - it only guarantees that the inertial terms (Reynolds number) in the momen-
tum equations are zero, but any other time-dependent behaviour inherited, for example from the boundary conditions, has
not been eliminated.
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