

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Highly regio- and stereoselective palladium-catalyzed allene bifunctionalization cascade via π -allyl intermediate

Tao Bai ^{a, *}, Yanhui Yang ^a, Trevor Janes ^b, Datong Song ^b, Zhiqiang Guo ^c

- a College of Chemistry and Chemical Engineering, Shanxi University, #92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China
- b Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- ^c Scientific Instrument Center, Shanxi University, Taiyuan, 030006, People's Republic of China

ARTICLE INFO

Article history:
Received 12 June 2017
Received in revised form
8 August 2017
Accepted 14 August 2017
Available online 19 August 2017

Keywords: Allenes Palladium Allylic compounds Multicomponent reactions

ABSTRACT

We report a palladium-catalyzed allene bifunctionalization reaction that forms C-C and either C-O or C-N bonds in one pot with excellent regio- and stereoselectivity. Carboxylic acids, amides, and hydroxide are all suitable nucleophiles. Organoboronic acid acts as hydroxide transfer reagent. An intermediate π -allyl palladium complex was isolated, which yields improved catalytic performance as well as evidence of the origin of stereoselectivity. A derivatization study emphasizes the utility of the functionalized allylic products.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polysubstituted allyl compounds are important building blocks in organic synthesis, and are common structural motifs in natural products. Transition metal-catalyzed nucleophilic allylic substitution is a rapid process to construct polysubstituted allyl compounds. The palladium catalyzed Tsuji—Trost reaction has been developed into a powerful tool for this transformation in recent years. The π -allyl palladium intermediates are essential to the formation of allylic substitution products; such π -allyl palladium species have been thoroughly studied and reviewed by organometallic chemists. Allenes possess two adjacent C—C double bonds, and can be used to construct π -allyl metal complexes with participation of electrophiles such as aryl halides. Subsequent nucleophilic substitution yields the polysubstituted allyl products.

In most reports of palladium-catalyzed allene bifunctionalization reactions, the allene substituent R is an electron donating group such as alkyl/aryl, or a weak electron withdrawing group (EWG) such as carboxylic acid, ester or amide (eq. 1, Scheme 1). 5c.5d Savic et al. demonstrated that heteroatom-based nucleophiles such as acetate could be employed in the bifunctionalization cascade,

E-mail address: baitaostersioc@163.com (T. Bai).

yielding allyl acetate products^{9b} (eq. 2, Scheme 1). However, selectivity problems hampered further applications of this method.

Reports of nucleophilic substitution reactions utilizing allenes bearing strong EWG (such as sulfone, phosphonate and phosphine oxide) are still scarce. Boronic acids are commonly used to construct C–C bonds via the transmetallation step in Suzuki-Miyaura coupling reactions. However, examples of boronic acid employed as hydroxide source to construct C–O bonds are uncommon. Herein we report a new series of palladium-catalyzed allene bifunctionalization reactions which generate substituted allylic alcohols, esters and amides employing boronic acid, carboxylic acids and amides, respectively as nucleophiles (eq. 3, Scheme 1). We observe good regioselective control and pure (Z)-selectivity of the double bond geometry. We isolated a possible intermediate π -allyl palladium complex and used it as catalyst, which improved the efficiency of the reaction.

2. Results and discussion

In the cascade reaction involving phenylsulfonyl allene **1a** and phenyl iodide **2a**, different palladium sources, boronic acids, phosphine ligands, and bases were screened in order to find optimal reaction conditions (Table 1). For purification purposes, the allyl alcohol product was protected using imidazole/TBSCI.¹⁰ Optimal conditions (**entry 1**, Table 1) resulted in a 64% isolated

Corresponding author.

$$R = + R'X + \frac{Y}{R''} \frac{[Pd]}{Z \text{ In or SnCl}_2} R'' \frac{Z}{YH}$$

$$+ ArI \frac{[Pd]}{AcONa} R''' OAc + R''' OAc$$

$$= [Pd] Ar OAc + R''' OAc$$

$$= [Pd] Nu = [O] \text{ or } [N]$$

$$= WG + ArI \frac{[Pd]}{Nu} = [O] \text{ or } [N]$$

$$= WG + ArI \frac{[Pd]}{Nu} = [O] \text{ or } [N]$$

$$= WG + ArI \frac{[Pd]}{Nu} = [O] \text{ or } [N]$$

$$= WG + ArI \frac{[Pd]}{Nu} = [O] \text{ or } [N]$$

$$= WG + ArI \frac{[Pd]}{Nu} = [O] \text{ or } [N]$$

Scheme 1. Cascade reaction pathway involving allenes.

yield of desired product **4a**, but we were unable to completely suppress the biphenyl product **4aa** formed by the direct C-C coupling of phenyl iodide **2a** and boronic acid **3a**. For the palladium source, [Pd(MeCN)₄](OTf)₂ outperformed its counterparts Pd₂(dba)₃ and Pd(OAc)₂ (**entries 1–3**, Table 1). Arylboronic acids of varying structure were also screened (entries **4–9**, Table 1); use of *ortho* methyl-substituted phenyl boronic acid (**3h**) yielded only a trace amount of desired product **4a**, and *meta*-methylphenyl boronic acid (**3i**) gave 26% isolated yield of **4a** (entries **10–11**,

Scheme 2. Substrate scope.

Table 1). The optimal boronic acid was *p-n*-butylphenylboronic acid (**3a**). Screening different phosphine ligands (entries **12–17**, Table 1) revealed Xantphos to be the preferred choice. The success of Xantphos may be attributed to its wide bite angle and rigid carbon skeleton, which can help to increase the ability of Pd to bind the C–C double bond of the functionalized allene substrates. Changing the base from potassium carbonate to KF or K₃PO₄ did not lead to improved yields (entries **18–19**, Table 1).

Table 1Optimization of palladium catalyzed cascade reaction.

Entry	[Pd]/5 mol%	[P]/10 mol%	Boronic acids 3	Base	4a ^a (%)	4aa (%)
	[Pd]/[P] = 1:2					
1	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3a	K₂CO₃	64	26
2	Pd ₂ (dba) ₃	Xantphos	3a	K ₂ CO ₃	28	_
3	$Pd(OAc)_2$	Xantphos	3a	K ₂ CO ₃	9	_
4	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3b	K ₂ CO ₃	46	_
5	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3c	K ₂ CO ₃	26	_
6	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3d	K ₂ CO ₃	49	_
7	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3e	K ₂ CO ₃	trace	_
8	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3f	K_2CO_3	25	_
9	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3 g	K ₂ CO ₃	trace	_
10	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3h	K ₂ CO ₃	trace	_
11	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3i	K ₂ CO ₃	26	_
12	[Pd(MeCN) ₄](OTf) ₂	PPh ₃	3a	K ₂ CO ₃	trace	34
13	[Pd(MeCN) ₄](OTf) ₂	dppe	3a	K_2CO_3	trace	trace
14	[Pd(MeCN) ₄](OTf) ₂	dppp	3a	K ₂ CO ₃	trace	18
15	[Pd(MeCN) ₄](OTf) ₂	dppf	3a	K ₂ CO ₃	trace	6
16	[Pd(MeCN) ₄](OTf) ₂	dppbz	3a	K ₂ CO ₃	trace	trace
17	[Pd(MeCN) ₄](OTf) ₂	DPEphos	3a	K ₂ CO ₃	trace	25
18	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3a	KF	26	_
19	[Pd(MeCN) ₄](OTf) ₂	Xantphos	3a	K_3PO_4	trace	_
20	[Pd(MeCN) ₄](OTf) ₂	Xantphos	THF/H ₂ O (3:0.1/mL)	K ₂ CO ₃	Complicated	_

THF was dried by sodium/benzophenone and used in glove box ($O_2 < 0.1$ ppm and $H_2O < 0.1$ ppm).

^a There is no need to purify the allyl alcohol precursor. Isolated yield of two steps were shown. -TBS = -SiMe₂(^fBu); -OTf = -SO₂CF₃;

$$Xantphos = \bigvee_{PPh_1} \bigcap_{PPh_2} \bigcap_{PPh_2} \bigcap_{PPh_2} \bigcap_{PPh_2} \bigcap_{PPh_2} \bigcap_{Ph_2} \bigcap_{Ph_3} \bigcap_$$

Download English Version:

https://daneshyari.com/en/article/5211901

Download Persian Version:

https://daneshyari.com/article/5211901

Daneshyari.com