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Abstract

We present spectral element (SE) and discontinuous Galerkin (DG) solutions of the Euler and compressible Navier–
Stokes (NS) equations for stratified fluid flow which are of importance in nonhydrostatic mesoscale atmospheric modeling.
We study three different forms of the governing equations using seven test cases. Three test cases involve flow over moun-
tains which require the implementation of non-reflecting boundary conditions, while one test requires viscous terms (den-
sity current). Including viscous stresses into finite difference, finite element, or spectral element models poses no additional
challenges; however, including these terms to either finite volume or discontinuous Galerkin models requires the introduc-
tion of additional machinery because these methods were originally designed for first-order operators. We use the local
discontinuous Galerkin method to overcome this obstacle. The seven test cases show that all of our models yield good
results. The main conclusion is that equation set 1 (non-conservation form) does not perform as well as sets 2 and 3 (con-
servation forms). For the density current (viscous), the SE and DG models using set 3 (mass and total energy) give less
dissipative results than the other equation sets; based on these results we recommend set 3 for the development of future
multiscale research codes. In addition, the fact that set 3 conserves both mass and energy up to machine precision motives
us to pursue this equation set for the development of future mesoscale models. For the bubble and mountain tests, the DG
models performed better. Based on these results and due to its conservation properties we recommend the DG method. In
the worst case scenario, the DG models are 50% slower than the non-conservative SE models. In the best case scenario, the
DG models are just as efficient as the conservative SE models.
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1. Introduction

The recent paradigm shift in high-performance computing (HPC) is forcing many numerical weather pre-
diction (NWP) operational centers to rethink the numerical methods that their models are based on. For
example, the current trend in distributed-memory computing has moved toward clusters based on hundreds
of thousands of cheap, commodity-based processors; the top three fastest computers in the world in 2007 have
212,000 (Lawrence Livermore National Laboratory, USA), 65,000 (Forschungszentrum Juelich, Germany),
and 14,000 (New Mexico Computing Applications Center, USA). It is expected that clusters comprised of mil-
lions of processors will appear very soon. In order to take full advantage of computers with such high proces-
sor counts requires exploring numerical methods that are local in nature, have a large on-processor operation
count, and a small communication footprint. Local high-order methods like the spectral element and discon-
tinuous Galerkin methods have all of these properties and for this reason they have been successfully applied
to a variety of problems.

Spectral element (SE) methods combine the local domain decomposition property of finite element (FE)
methods with the high-order accuracy and weak numerical dispersion of spectral methods. SE methods have
shown promise in many areas of the geosciences including: seismic wave propagation [33], deep Earth flows
[13], climate [53,14], ocean [28,38], and numerical weather prediction [21,22]. These methods are high-order
FE methods where the interpolation and integration points are chosen to be the Legendre–Gauss–Lobatto
points.

In contrast, discontinuous Galerkin (DG) methods combine the local domain decomposition property of
FE methods, the high-order accuracy and weak numerical dispersion of spectral methods, and the conserva-
tion properties of finite volume (FV) methods; in essence, DG methods are the high-order generalization of
FV methods. There are two distinct types of DG methods: nodal (see [20,23]) and modal (see [12,59]), but
in the current study we only consider the nodal approach introduced in [20] which uses the same machinery
developed for SE methods such as quadrilateral grids, tensor product basis functions, and Legendre–Gauss–
Lobatto grid points. It has been only very recent (since 2000) that the DG method first appeared in geophys-
ical fluid dynamics (GFD) applications. However, implementations of the DG method in GFD have remained
primarily restricted to shallow water flow (see [44,35,2,20,10,12,37,40,34,23,24]). To date, there has been no
published work on either SE or DG methods for nonhydrostatic mesoscale atmospheric applications.

However, doing something for the first time is not a sufficient reason for developing a new model – the new
model must have attractive properties not offered by existing models. The high-order accuracy, geometric flex-
ibility to use any grid, and the scalability of SE and DG methods on large processor count computers are suf-
ficient reasons for exploring this new class of models.

Almost all nonhydrostatic mesoscale models currently in existence are based on the finite difference (FD)
method; examples include the following list of models: [4,5,11,17,25,26,29–32,39,42,43,46,48,57,58], and [60].
Included in this list are models such as ARPS (University of Oklahoma), COAMPS (US Navy), LM (German
Weather Service), MC2 (Environment Canada), MM5 (Penn State/NCAR), NMM (National Center for
Environmental Prediction), and WRF (NCAR). The only models in the literature not based on the FD
method are the FV models found in [7] and [1], and the SE and DG models presented in our paper. One
of the biggest advantages that SE and DG methods have over the FD method is that no terrain following
coordinates of the type presented in [16] need to be included in the governing equations. Of course, the orog-
raphy has to be accounted for in some manner but element-based Galerkin (EBG) methods, such as FE, SE,
FV, and DG, incorporate the orography via the definition of the grid. EBG methods do not require either
orthogonal grids or grids with specific directions (such as the I and J indices in FD models); EBG models
are inherently unstructured and, while requiring additional data structures for bookkeeping, completely liber-
ate the method from the grid. This freedom from the grid has major repercussions in the implementation of
these methods on distributed-memory computers in that no halo is required which translates into truly local
algorithms that require very little communication across processors; instead, the communication stencil con-
sists of the perimeter values of each processor (see [21]). The advantage that SE and DG methods have over
the FD and FV methods is that high-order solutions (greater than fourth order) can be constructed quite nat-
urally within the framework – such high-order properties are desirable because they reduce the dispersion
errors associated with the discrete spatial operators [19]. In fact, the SE and DG formulations proposed in
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