

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Copper(I)-catalyzed stereoselective hydrogenation of 1,3-diynes and envnes

Niklas O. Thiel, Sebastian Kemper, Johannes F. Teichert*

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany

ARTICLE INFO

Article history: Received 30 March 2017 Received in revised form 5 May 2017 Accepted 8 May 2017 Available online 10 May 2017

Keywords: Copper Hydrogenation Alkynes Stereoselectivity Dienes Catalysis

ABSTRACT

A stereoselective hydrogenation of 1,3-diynes with an air-stable copper(I)/N-heterocyclic carbene complex, [IPrCuOH], has been developed. The corresponding products, 1,3-dienes, are obtained in a stereoselective manner depending on their substitution pattern: Diaryl-diynes yield *E,E*-1,3-dienes, whereas dialkyl-diynes are converted to the corresponding *Z,Z*-1,3-dienes. Hydrogenation and deuteration experiments with enynes indicate that these are competent reaction intermediates in the hydrogenation of divnes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The catalytic hydrogenation of 1,3-diynes can be employed to stereoselectively generate 1,3-dienes, given a suitable hydrogenation catalyst is at hand. Although a plethora of homogeneous hydrogenation catalysts for a wide variety of functional groups is known, surprisingly few reports on the hydrogenation of 1,3-diynes have been disclosed. Among these, the use of the Lindlar catalyst (heterogeneous palladium, poisoned with lead additives) has been most prominent, delivering the corresponding Z, and ienes. However, (semi)hydrogenations with the Lindlar catalyst are frequently plagued by overreduction to the corresponding alkanes and E/Z-isomerization of the desired alkenes.

With foresight to the use of more abundant metal catalysts for catalytic hydrogenation, ⁸ we⁹ and others¹⁰ have investigated the use of copper(I) complexes for catalytic semihydrogenation of alkynes. Specifically, the use of copper(I) complexes with oxygen-^{9a} and nitrogen-tethered^{9c} N-heterocyclic carbene (NHC) ligands have led to chemo- and stereoselective catalysts for the generation of *Z*-alkenes from internal alkynes. In this vein, our group has introduced a copper(I)/NHC hydroxide complex, [IPrCuOH], ^{11,12} as

effective and air-stable catalyst for Z-stereoselective alkyne semihydrogenations. $^{9\mathrm{b},13}$

Herein, we disclose our systematic study of copper(I)-catalyzed hydrogenation of 1,3-diynes to 1,3-dienes. We could establish that with the air-stable [IPrCuOH] complex, diaryl-substituted 1,3-diynes are converted to the corresponding *E,E*-1,3-dienes, a stereoselectivity opposite to the one found with isolated alkynes with the same catalyst. Furthermore, this stereoselectivity is contrary to the one generally observed when employing the Lindlar catalyst on 1,3-diynes. On the other hand, dialkyl substituted 1,3-diynes are converted to the *Z,Z*-1,3-dienes (Scheme 1).

2. Results and discussion

Under reaction conditions optimized previously (80 bar H_2 , THF, 40 °C, 5 mol-% [IPrCuOH]), ^{9b} we found that diphenyl-substituted 1,3-diyne 1 was converted stereoselectively to *E,E-2* (Scheme 2). This result underscored the particular chemoselectivity of [IPrCuOH] as hydrogenation catalyst, as other copper(I) complexes have failed to give a selective hydrogenation of 1,3-diynes. ^{10a} Also, our previously reported catalyst system gave a mixture of products with 1 under otherwise identical reaction conditions. ^{9c}

To probe whether this particular reversal of stereoselectivity towards the *E,E*-diene was general, we prepared a variety of diaryl-1,3-diynes **3** and subjected them to hydrogenation conditions with

^{*} Corresponding author.

E-mail address: johannes.teichert@chem.tu-berlin.de (J.F. Teichert).

Scheme 1. Catalytic hydrogenation of 1,3-diynes to 1,3-dienes.

Scheme 2. Cu(I)-catalyzed hydrogenation of 1,4-diphenyl-1,3-butadiyne.

5 mol-% [IPrCuOH] as catalyst (Scheme 3). We found that to generally ensure full conversion of the starting materials **3**, the dihydrogen (H₂) pressure had to be raised to 100 bar. In all cases, high *E,E*-selectivity for the corresponding products **4** was detected. Electron-rich diynes bearing alkyl or methoxy substituents **3a-3d** were converted to the corresponding *E,E*-1,3-dienes **4a-4d** with generally high yields (81%–92%). To achieve full conversion of the latter (**3c** and **3d**), the catalyst loading had to be raised to 10 mol-%. Electronic factors seem to be non-interfering for the catalytic hydrogenation protocol, as electron-poor 1,3-dienes **4e-4g** were also obtained with similarly high yields and stereoselectivity. No conversion was observed with benzoic ester derivative **3h** and bisnitrile **3i**, this is most probably due to their insolubility in THF.

Scheme 3. Cu(I)-catalyzed hydrogenation of diaryl-1,3-butadiynes, substrate scope. ^a10 mol-% [IPrCuOH] were used.

no conversion

When dialkyl-substituted 1,3-butadiynes **5** were used as substrates for the copper(I)-catalyzed hydrogenation, we observed that in the absence of an aryl substituent on the alkyne a reversal of stereoselectivity towards the *Z,Z*-1,3-dienes **6** took place. This high *Z*-selectivity now resembles the case of copper(I)-catalyzed semi-hydrogenation of simple internal alkynes⁹ and that of hydrogenation of 1,3-diynes with the Lindlar catalyst:² With 5 mol-% [IPrCuOH] at 100 bar H₂, *Z,Z*-**6a** was isolated in excellent yield of 95%. Similarly, *Z,Z*-**6b** could be furnished in 85%, albeit with a higher catalyst loading to ensure full conversion. In both cases, the amount of *E,E*-isomers was negligible (5% and 3%, respectively).

Configurations of the products **4** and **6** (Schemes 3 and 4) were determined by the three bond indirect coupling constants between the hydrogen atoms. Because the products **4a-4g** possess AA'MM' spin systems in the center of the molecules due to their symmetry, analysis through spin simulations were necessary to extract these three bond coupling constants. ¹⁴ In the case of **6a** and **6b** the even more complex spin systems were simplified by homonuclear decoupling experiments with irradiation on the aliphatic positions next to the double bonds. In such a way, AA'MM' spin systems could be observed in these experiments as well and subsequently analyzed with spin simulations instead of the original ¹H NMR spectra. ¹⁴

The marked difference in stereoselectivity of diaryl vs. dialkyl substituted diynes lead us to the hypothesis that the aryl substituents on the diyne starting materials **1** and **3** facilitates an isomerization process ultimately furnishing the thermodynamically more stable *E.E.*-1.3-dienes.

To shed light on a possible isomerization mechanism, a series of experiments with enynes 7 to 9, putative reaction intermediates in the hydrogenation of 1,3-diynes, were carried out (Scheme 5). We observed that the alkene geometry of the enyne (as in 7 or 8) has a marked effect on the stereoselectivity for the following step towards the 1,3-dienes. Whereas Z-enyne 7 selectively gave E,E-diene 2, the corresponding E-enyne 8 produced the E,Z-enyne 2 under standard hydrogenation conditions.^{9b} However, in the latter reaction, the stereoselectivity showed a dependence on the H₂ pressure: Raising the pressure to 100 bar H₂ led to the formation of a mixture of E,Z-2 and E,E-2 (62: 38, full conversion of 8). This indicated that under the reaction conditions and elevated H₂ pressure, an isomerization process of E,Z-2 to E,E-2 can occur. Viewing the abovementioned reactions of the enyne isomers as a whole, we propose that Z-enynes such as 7 are viable intermediates in the divne hydrogenation towards E,E-dienes such as 2. In this case, the conversion/putative isomerization towards the *E,E*-diene is fast. On the contrary, emanating from the E-enyne 8, a mixture of 1,3-diene stereoisomers was found, which does not correspond to the high E,E-selectivity observed in the abovementioned cases of diaryl-1,3-

Scheme 4. Cu(I)-catalyzed hydrogenation of dialkyl-1,3-butadiynes. ^aReaction was carried out at 90 bar H₂.

Download English Version:

https://daneshyari.com/en/article/5212193

Download Persian Version:

https://daneshyari.com/article/5212193

Daneshyari.com