EI SEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Reactivity of (1-methoxycarbonylpentadienyl)iron(1+) cations with hydride, methyl, and nitrogen nucleophiles

Yuzhi Ma, Young K. Yun, Julie Wondergem (nee Lukesh), Anobick Sar ¹, Jayapal Reddy Gone, Sergey Lindeman, William A. Donaldson*

Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, USA

ARTICLE INFO

Article history: Received 12 May 2017 Received in revised form 12 June 2017 Accepted 13 June 2017 Available online 15 June 2017

Keywords: Dienyl-iron cations Nucleophilic addition Vinylcyclopropanes Click chemistry

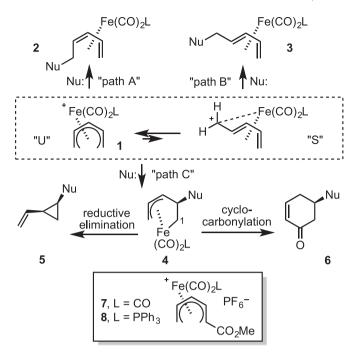
ABSTRACT

The reaction of tricarbonyl and (dicarbonyl)triphenylphosphine (1-methoxycarbonyl-pentadientyl) iron(1+) cations **7** and **8** with methyl lithium, NaBH₃CN, or potassium phthalimide affords (pentenediyl) iron complexes **9a-c** and **11a-b**, while reaction with dimethylcuprate, gave (*E,Z*-diene)iron complexes **10** and **12**. Oxidatively induced-reductive elimination of **9a-c** gave vinylcyclopropanecarboxylates **17a-c**. The optically active vinylcyclopropane (+)-**17a**, prepared from (1S)-**7**, undergoes olefin cross-metathesis with excess (+)-**18** to yield (+)-**19**, a C9–C16 synthon for the antifungal agent ambruticin. Alternatively reaction of **7** with methanesulfonamide or trimethylsilylazide gave (*E,E*-diene)iron complexes **14d** and **e**. Huisgen [3 + 2] cyclization of the (azidodienyl)iron complex **14e** with alkynes afforded triazoles **25a-e**. © 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Acyclic (pentadienyl)iron(1+) cations are versatile precursors for organic synthesis, due to the wide variety of structural motifs which may be produced upon nucleophilic addition (Scheme 1).¹ While NMR spectra for most cations 1 are indicative of the "U" or cisoid structure in solution, it is generally believed that the "S" or transoid form does exist in an equilibrium with the more stable "U" form (Scheme 1). The spectroscopic detection of a transoid structure has only been reported for a single sterically biased case.² Nucleophilic attack on the "U" structure may proceed via attack at one of the pentadienyl termini to afford cis-diene complexes 2 (path A), or with weak nucleophiles such as water, amines and electron-rich aromatics, via the less-stable but more reactive "S" form to generate trans-diene complexes (path B). For certain combinations of nucleophiles and cations, attack occurs at an internal carbon of the dienyl ligand to afford (3-pentene-1,5-diyl)iron complexes 4 (path C). Stable complexes 4, which possess an electron withdrawing substituent at the σ -bound (C1) carbon, may be decomposed under oxidative conditions to afford vinylcyclopropanes. Alternatively, unstable complexes 4 are known to afford 5-substituted-2-cyclohexenones **6** via cyclocarbonylation.

The reactivity of (1-methoxycarbonylpentadienyl)iron(1+) cations **7** and **8** with *carbon* nucleophiles is observed to proceed via all three pathways.^{3–5} This reactivity has been utilized in the synthesis of methyl 5-hydroxyeicosatetraenoate (5-HETE),^{3a} iron containing HETE analogs,^{3c} and the C7–C24 segments of macrolactin A,^{3b} (path A), and 2-(2'-carboxycyclopropyl)-glycines,^{5c} bicyclopropanes,^{5h} and dysibetaine CPa⁵ⁱ (path C). There are fewer examples of the reaction of (dienyl)iron cations.


2. Results and discussion⁸

The (1-methoxycarbonylpentadienyl)iron(1+) cations (\pm)-**7** and (\pm)-**8** were prepared by literature methods. ³a,5b Cationic complex (\pm)-**8** was isolated as an amorphous solid. Recrystallization from acetone/diethyl ether gave yellow block crystals that were characterized by X-ray diffraction analysis (Fig. 1). ⁹ The structure of **8** revealed that the triphenylphosphine ligand occupies the basal site *anti* to the methoxycarbonyl substitutent on the pentadienyl ligand. This relative orientation of the PPh₃ ligand, in solution, was previously proposed on the basis of the upfield shifts of H-7 and H-8exo (numbering in Fig. 1) compared to those for **7**. ^{5b} As anticipated, the Fe–CO bond distances (Table 1) are shorter (1.784–1.812 Å) and the carbonyl C–O distances (1.133–1.142 Å) for **8** compared to those observed in the crystal structure of **7**

^{*} Corresponding author.

E-mail address: william.donaldson@marquette.edu (W.A. Donaldson).

¹ Deceased May 2014.

Scheme 1. 7 and **8** with non-carbon nucleophiles. We herein report on the reactivity of these cations with hydride, methyl,⁷ and nitrogen nucleophiles, and their subsequent reactions

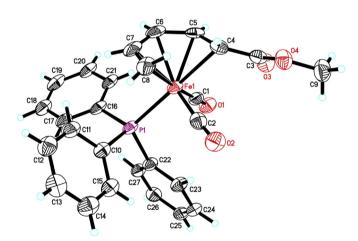
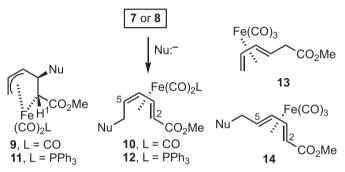


Fig. 1. ORTEP of 8 (PF₆ counterion and solvent molecule omitted for clarity).


 $(Fe-CO = 1.835-1.837 \text{ Å}; FeC-O = 1.121-1.137 \text{ Å}).^{3c}$ In contrast, the C4-C5, C5-C6 and C6-C7 distances within the pentadienyl ligand and the iron-to-pentadienyl distances Fe-C4, Fe-C5 and.

Fe-C6 for **7** and **8** are relatively similar, while the C-7-C8, Fe-C7 and Fe-C8 distances (1.395 Å, 2.102 Å and 2.165 Å) are slightly shorter for **8**, compared to those for **7** (1.419 Å, 2.141 Å and 2.207 Å).

We have previously reported that addition of a solution of methyllithium in ether to a solution of 7 in dichloromethane gave predominantly the pentendiyl complex 9a along with variable amounts of the known¹⁰ complex **13**, while reaction of **7** with Me₂CuLi (formed from MeLi/CuBr) gave primarily the E,Z-diene complexes 10a (Scheme 2, Table 2). The reactions of 7 with Me₃Al or MeTi(i-PrO)₃ were less selective and gave mixtures of **9a** and **10a**. Reaction of 8 with MeLi or with Me₂CuLi gave predominantly pentenediyl complex 11a or diene complex 12a. The reaction of 7 with NaBH₃CN gave a separable mixture of pentenediyl complex 9b

Table 1 Bond lengths (Å) for (pentadienyl)iron cations 7 and 8 (atom numbering corresponds to structure in Fig. 1).

Bond	7 (ref. 3c)	8 (this work)
Fe-C1	1.835(7)	1.812(5)
Fe-C2	1.837(6)	1.784(5)
C1-O1	1.137(8)	1.133(6)
C2-O2	1.121(7)	1.142(6)
Fe-C4	2.168(7)	2.177(5)
Fe-C5	2.114(7)	2.101(5)
Fe-C6	2.129(7)	2.128(5)
Fe-C7	2.141(6)	2.102(5)
Fe-C8	2.207(7)	2.165(5)
C4-C5	1.402(9)	1.404(7)
C5-C6	1.418(9)	1.408(8)
C6-C7	1.417(9)	1.417(8)
C7-C8	1.419(10)	1.395(8)

 \mathbf{a} , Nu = Me; \mathbf{b} , Nu = H; \mathbf{c} , Nu = NPhth; \mathbf{d} , Nu = NHSO₂Me; \mathbf{e} , Nu = N₃

Scheme 2. Nucleophilic addition to (1-methoxypentadienyl)iron cations.

Table 2 Nucleophilic addition to (1-methoxycarbonylpenta-dienyl)iron cations.

	Reagents	Nu	Product(s)
7	MeLi ^c	Me	9a (46-71%) + 13 (0-25%) ^a
7	MeLi/CuBr-SMe2d	Me	$10a + 9a (14:1, 58\%)^a$
7	Me ₃ Al ^e	Me	10a + 9a (3:1, 59%) ^b
7	MeLi/TiCl(i-PrO) ₃ ^c	Me	10a + 9a (2:1, 37%) ^b
8	MeLi ^c	Me	11a $(66\%) + 12a (2\%)^b$
8	MeLi/CuBr-SMe2d	Me	12a (56%) ^b
7	NaBH ₃ CN ^f	Н	9b $(78\%) + 10b (12\%)^{b}$
7	LiI/LiAlH(t-BuO) ₃ f	Н	9b (31%) ^b
8	NaBH ₃ CN ^f	Н	11b $(87\%) + $ 12b $(5\%)^{b}$
7	K ⁺ ⁻ NPhth ^g	NPhth	9c (62%) ^b
7	H ₂ NSO ₂ Me ^h	NHMs	14d (98%) ^b
7	TMSN ₃ ^h	N ₃	14e (56%) ^b

- ^a Reported in preliminary communication (ref. 7).
- ^b This work.
- CH2Cl2/-78 °C.
- d THF-Et₂O (3:1)/-78 °C.
- $\text{CH}_2\text{Cl}_2/-30\ ^\circ\text{C}.$
- f THF/0 °C.
- g CH₃NO₂/23 °C.
- h CH₂Cl₂/23 °C.

and E,Z-diene complex 10b. Use of LiAlH(t-BuO)3 instead of NaBH₃CN gave lower yields of **9b**. In a similar fashion, reaction of **8** with NaBH₃CN gave predominantly pentenediyl complex 11b. Finally, reaction of 7 with KNPhth, MeSO₂NH₂ or TMSN₃ gave pentendiyl complex **9c** or *E,E*-diene complexes **14d** or **14e**.

The structures of the products were assigned on the basis of their NMR spectral data. In particular for **9a-c** the presence of three

Download English Version:

https://daneshyari.com/en/article/5212263

Download Persian Version:

https://daneshyari.com/article/5212263

Daneshyari.com