ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Asymmetric synthesis of benzofuryl β -amino alcohols by the transfer hydrogenation of α -functionalized ketones

Agnieszka Tafelska-Kaczmarek*, Marek P. Krzemiński, Marta Ćwiklińska

Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., Toruń, Poland

ARTICLE INFO

Article history: Received 10 March 2017 Received in revised form 30 April 2017 Accepted 15 May 2017 Available online 17 May 2017

Keywords: Asymmetric synthesis Transfer hydrogenation Amino alcohols Benzofuran Amino ketones

ABSTRACT

The asymmetric transfer hydrogenation of representative benzofuryl α -sulfonyloxy ketones and N-protected α -amino ketones with an azeotropic mixture of formic acid/triethylamine, catalyzed by RhCl[(R,R)-TsDPEN](C₅Me₅), afforded the corresponding 1,2-diol monosulfonates and N-substituted β -amino alcohols in high yields and with enantioselectivities up to 99%. Transformation of the reduction products to the chiral benzofuryl β -amino alcohols possessing a primary amine group is also described.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Chiral amino alcohols represent useful structures in organic and medicinal chemistry. β -Amino alcohols are found in the structural units of many building blocks, chiral auxiliaries, and ligands. 1-5 Moreover, optically active β -amino alcohols containing heteroaryl moieties are of great importance as a key intermediates for the synthesis of physiologically active compounds.^{6,7} Benzofuran is considered as an important structure due to its diverse biological profile.⁸ There have been many reports on the synthesis of benzofuran derivatives because of their clinical importance.^{9,10} For example, bufuralol (2-tert-butylamino-1-(7-ethylbenzofuran-2-yl)ethanol) is a potent non-selective β -adrenergic receptor antagonist of comparable potency to propranolol, an inhibitor of testosterone 6β -hydroxylase, and commonly used marker of hepatic CYP 2D6 activity. 11-15 1-(3-Phenethylbenzofuran-2-yl)-2-propylaminoethanol, a propafenone analogue, shows antiarrhythmic activity with a lack of β -adrenoacceptor blocking activity. 16

Various syntheses of enantiomerically pure β -amino alcohols including: the aminohydroxylation of olefins, 17 the reduction-amination of α -halo ketones, 5,18 the enzymatic resolution of racemic β -amino alcohols, 19 catalytic reduction of α -amino

ketones, $^{20-24}$ and many others have been developed. $^{25-27}$ An attractive method for β -amino alcohol synthesis is the asymmetric transfer hydrogenation of α -functionalized ketones. Asymmetric transfer hydrogenation (ATH) is established as an excellent reduction method due to its versatility, operational simplicity, avoidance of explosive hydrogen gas, catalyst robustness, and high stereoselectivity. $^{32-35}$

In our previous asymmetric syntheses of benzofuryl β -amino alcohols, the transfer hydrogenation of α -halo ketones, 36 α -imino ketones, 37 and α -dialkylamino ketones was a key step. Hereby, the corresponding β -amino alcohols possessing secondary and tertiary amine groups were obtained.

In continuation of our earlier efforts toward the preparation of chiral benzofuryl β -amino alcohols, we herein report the asymmetric transfer hydrogenation of α -sulfonyloxy, N-Cbz protected α -amino ketones, α -succinimido, and α -phthalimido ketones, and further transformations to afford β -amino alcohols with primary and secondary amine groups.

2. Results and discussion

2.1. Asymmetric transfer hydrogenation of benzofuryl α -sulfonyloxy ketones

The α -sulfonyloxy benzofuryl ketones **1–4** were readily prepared by sulfonyloxylation of the corresponding (benzofuran-2-yl)

Corresponding author.

E-mail address: tafel@chem.umk.pl (A. Tafelska-Kaczmarek).

Table 1 Asymmetric transfer hydrogenation of benzofuryl α -sulfonyloxy ketones **1–4**.

Ketone	R^1	R^2	R ³	Alcohol	Yield ^a (%)	ee ^b (%)
1a	Н	Н	4-Me-C ₆ H ₄	5a	92	97
1b	Н	Et	$4-Me-C_6H_4$	5b	93	90
1c	Me	H	4-Me-C ₆ H ₄	5c	96	92
1d	Me	Me	4-Me-C ₆ H ₄	5d	89	87
1e	$Ph(CH_2)_2$	Н	4-Me-C ₆ H ₄	5e	95	93
2a	Н	Н	$4-Cl-C_6H_4$	6a	84	98 ^c
2b	Н	Et	$4-Cl-C_6H_4$	6b	93	94 ^c
2c	Me	Н	4-Cl-C ₆ H ₄	6c	96	90
3a	Н	Н	Ph	7a	99	97
3b	Н	Et	Ph	7b	93	94
3c	Me	Н	Ph	7c	93	92
4a	Н	Н	Me	8a	95	99
4b	Н	Et	Me	8b	93	95
4c	Me	Н	Me	8c	93	93
4e	Ph(CH ₂) ₂	Н	Me	8e	96	93

- ^a Isolated yield.
- b Determined by HPLC analysis on a chiral column (Daicel Chiralcel OD-H, 250 \times 4.6 mm, 5 μm).
- ^c Separation was not possible. Assignments based on the ee of β -azido alcohols **9** and **10**, respectively.

ethanones with [hydroxy(tosyloxy)iodo]benzene (PhI(OH)OTs), ³⁹ [hydroxy(mesyloxy)iodo]benzene (PhI(OH)OMs), ⁴⁰ [hydroxy(4-chloroben-zenesulfonyloxy)iodo]benzene (PhI(OH)OCs), ³⁹ and [hydroxy(benzenesulfonyloxy)-iodo]benzene (PhI(OH)OSO₂Ph). ³⁹ The α -sulfonyloxylation reactions were carried out in acetonitrile at reflux for 3 h, ⁴¹ and products were separated in moderate to good yields (45–79%). In general, the reaction products of ketones with PhI(OH)OCs were formed with lower yields than in other cases (see Experimental section). Moreover, in contrast to Lee and coworkers, ⁴¹ no problems with mesyloxylation and tosyloxylation of 1-(7-ethylbenzofuran-2-yl)ethanone were noticed; appropriate products were obtained in 57% and 76% yields, respectively. The

transfer hydrogenation of 1-4 was carried out with the formic acid/triethylamine azeotrope (5:2), catalyzed by RhCl[(R,R)-TsDPEN](C_5 Me $_5$), in ethyl acetate at room temperature. All 1,2-diol monosulfonates 5-8 were formed in very high yields (84-99%) and with enantioselectivities over 90% (Table 1). Only one product, 2-tosyloxy-1-(3,7-dimethylbenzofuran-2-yl)ethanol (5d), was obtained with lower ee, 87%. There was no significant influence of the sulfonyl group type on the yield and enantioselectivity of the reduction. 2-Sulfonyloxy-1-(benzofuran-2-yl)ethanols (5-8)a differing in the substituent of the sulfonyl group, were afforded with excellent ee, 97-99%. Derivatives of 3-methylbenzofuran (5-8)c were isolated with 90-93% ee, and 2-tosyloxy-1-(3-20%) were afforded with 3-20%0 were isolated with 3-20%1 ee, and 3-20%1 ee, and 3-20%1.

Table 2 Asymmetric synthesis of benzofuryl β -amino alcohols.

No.	R ¹	R ²	No.	Yield ^a (%)	ee (%)	No.	Yield ^a (%)
5a	Н	Н	9	84	97 ^b	14	99
5b	Н	Et	10	72	90 ^c	15	97
5c	Me	Н	11	62	92 ^c	16	96
5d	Me	Me	12	53	87 ^b	17	79
5e	$Ph(CH_2)_2$	Н	13	50	93 ^b	18	71
6a	Н	Н	9	77	98 ^b	_d	_
6b	Н	Et	10	88	94 ^c	_d	_
8a	Н	Н	9	99	99 ^b	_d	_

- ^a Isolated yield.
- b Determined by HPLC analysis on a chiral column (Daicel Chiralcel OD-H, 250 \times 4.6 mm, 5 μm).
- c Determined by HPLC analysis on a chiral column (Daicel Chiralcel OJ, 250 \times 4.6 mm, 10 $\mu m)$

^d Not tested.

Download English Version:

https://daneshyari.com/en/article/5212402

Download Persian Version:

https://daneshyari.com/article/5212402

<u>Daneshyari.com</u>