Tetrahedron 73 (2017) 3999-4003

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Copper-catalyzed reductive borylations on water

Chihiro Tanaka, Kimiaki Nakamura, Takashi Nishikata^{*}

Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan

ARTICLE INFO

Article history:

25 May 2017

Keywords: Copper Water Borylation Recycling

Received 28 April 2017

Accepted 28 May 2017

Available online 29 May 2017

Received in revised form

ABSTRACT

In this paper, we established copper catalyzed reductive borylation of terminal alkynes and diboron on water in the presence of amine. Moderate conditions enabled selective borylations of vinyl-substituted phenylacetylenes to undergo the borylation at a C–C triple bond. The Cu catalyst can be recycled for seven times.

© 2017 Elsevier Ltd. All rights reserved.

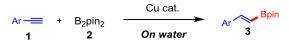
1. Introduction

1-Alkenylboron compounds are very useful and important reagents for organic synthesis.^{1,2} In particular, 1-alkenylborons are an important coupling partner for Suzuki-Miyaura couplings.² Several synthetic utilities have been developed, whereas their synthetic approaches have also been well-studied, including reaction of alkenyl metal species (Mg or Li) with B(OR)₃,³ metal catalyzed hydroborations of alkynes with HBpin (pinacolborane),⁴ olefin metathesis⁵ and boron Heck reaction.⁶

Several approaches mentioned above realized useful synthetic methodologies, the reactions under sustainable conditions are still problematic. In this context, reductive borylations are one of the promising reactions to accomplish sustainable borylations. Reductive borylation reaction provides a simple protocol to synthesize 1-alkenylborons, in which terminal alkyne, diboron and protic solvent require to carry out the reaction.^{7–9} Although some reports enabled various reductive borylation reactions, borylation with recycling a catalyst on water has not yet been established. Water is one of the most attractive medium for organic synthesis because of safety, economics, and environmental compatibilities.¹⁰ In this report, we established copper-catalyzed reductive borylation on water, in which the copper catalyst embedded in water can be recycled several times (Scheme 1).

2. Results and discussion

Our initial screening shown in Table 1 employed the reaction of phenylacetylene (1a), bis(pinacolate)diboron (B2pin2), Cul, PMD-ETA (*N*,*N*,*N*',*N*'',*N*''-pentamethyldiethylenetriamine), and amine in water at 45 °C. In reductive borylation chemistry, inorganic bases are effective but the reaction in water required an organic base, such as amine, rather than inorganic bases. Primary- and tertiaryamines did not gave satisfied yield of **3a**. On the other hand, secondary-amine, especially dicyclohexylamine, gave 72% of 3a in water. Other amines were also examined but the yields and selectivities were problematic. The reason for amine effects were not clear. PMDETA ligand was not important in this reaction and good yield was obtained without the ligand. We also screened various copper salts, and ligands but CuI without a ligand was found to be the best catalyst system in water medium. Recently, Lipshutz reported the metal-catalyzed reactions in water in the presence of various surfactants but surfactants were not effective for current reductive borylation.


Under optimal conditions, we evaluated the reactivities of alkynes **1** possessing various structures for reductive borylations in water (Table 2). Generally, reactivities are moderate in water but fundamental functional groups including methyl, halogen, and aryl groups resulted in good yields in the presence of 2 or 3 equivalents of diboron (**3b-3d**, **3f-3h**). Interestingly, borylated substrate gave **3e** without loss of the boron moiety. Heteroaromatic alkynes (**3i** and **3j**) reacted smoothly with diboron but pyridine substituted alkyne was not effective (**3k**). Arylalkynes showed nice reactivities,

^{*} Corresponding author.

E-mail addresses: author@university.edu, nisikata@yamaguchi-u.ac.jp (T. Nishikata).

Scheme 1. Reductive borylation on water.

whereas aliphatic alkynes, such as 1-octyne, did not give **3I**. In this reaction, an internal alkyne or alkene were not reactive and the corresponding products (**3m** and **3n**) were obtained in 64% and 70% yield without loss of C–C unsaturated bonds, respectively. The substrates having CN or ester (**3o** and **3p**) were not reactive on water, because of the solubility problem. But the reactions in the presence of surfactant such as Brij 35 (Polyoxyethyleneglycol dodecyl ether) gave good yields of the products.

Overall, our borylation reactivities were moderate but this moderate reactivities were effective to undergo the selective borylation with vinyl substituted alkynes (*m*-**1** and *p*-**1** in Scheme 2).¹¹ Under the optimal conditions, borylations occurred selectively at C–C triple bond in each substrates.

Our protocol on water is useful to carry out one-pot reaction and recycling of catalyst. 1-Alkenylboron is a good Suzuki coupling pater. After the first borylation to form **3a**, second Suzuki coupling reaction smoothly occurred to produce **6** in 98% yield (Scheme 3).

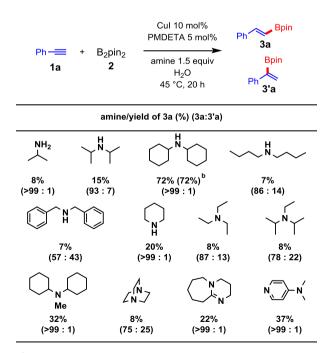
Our final goal is to establish catalyst recycling system on water (Table 3). Our recycling is very simple. After the borylation reaction, the product **3a** was extracted with ethyl acetate. After that, substrates (**1** and **2**) were added to the water. We tested the reaction for seven times but the yields were gradually dropped at each reaction. Especially, the yield was dramatically decreased at 6th reaction. The problem for recycling of catalyst is extraction process. After the reaction, the product was extracted with ethyl acetate, but the surface was not clear due to the generation boronic acid-related salts. Therefore, a part of catalyst in water was extracted.

Table 1

Amine effects.^a

3. Conclusion

In conclusion, we have established the Cu-catalyzed reductive borylation on water. Various substrates were able to be applied to the reaction system. The reactivities were moderate but this was effective to carry out selective borylation of alkynes having unsaturated C–C bonds. Recycling of the catalyst was also possible on water.


4. Experimental section

4.1. General

All reactions were carried out under nitrogen (99.95%) atmosphere. For TLC analyses precoated Kieselgel 60 F254 plates (Merck, 0.25 mm thick) were used; for column chromatography Silica *Flash*[®] P60 (SiliCycle, 40–63 µm) was used. Visualization was accomplished by UV light (254 nm), ¹H and ¹³C NMR spectra were obtained using a JEOL 400 MHz NMR spectrometer. Chemical shifts for ¹H NMR were described in parts per million (chloroform as an internal standard δ = 7.26) in CDCl₃, unless otherwise noted. Chemical shifts for ¹³C NMR were expressed in parts per million in CDCl₃ as an internal standard (δ = 77.16), unless otherwise noted. High resolution mass analyses were obtained using an ACQUITY UPLC/TOF-MS for ESI.

4.2. General procedure for the reductive borylations

Cul (10 mol%), **1** (1 equiv, 0.5 mmol), and **2** (2 equiv, 1.0 mmol) were sequentially added under air to a dram vial equipped with a stir bar. Amine (1.5 equiv, 0.75 mmol), and distilled water (1.0 mL) were added by syringe, and the resulting mixture was vigorously stirred under nitrogen atmosphere [charged by general N_2 (99.95%)

^aAll reactions were carried out on water at 45 °C for 20 h with Cul (10 mol%), PMDETA (5 mol%), amine (1.5 equiv), **1a** (2.0 equiv.) and **2** (1.0 equiv.). Yields were isolated. ^b Without PMDETA.

Download English Version:

https://daneshyari.com/en/article/5212416

Download Persian Version:

https://daneshyari.com/article/5212416

Daneshyari.com