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a b s t r a c t

A fast synthetic type iterative model is proposed to speed up the slow convergence of dis-
crete velocity algorithms for solving linear kinetic equations on triangular lattices. The effi-
ciency of the scheme is verified both theoretically by a discrete Fourier stability analysis
and computationally by solving a rarefied gas flow problem. The stability analysis of the
discrete kinetic equations yields the spectral radius of the typical and the proposed itera-
tive algorithms and reveal the drastically improved performance of the latter one for any
grid resolution. This is the first time that stability analysis of the full discrete kinetic equa-
tions related to rarefied gas theory is formulated, providing the detailed dependency of the
iteration scheme on the discretization parameters in the phase space. The corresponding
characteristics of the model deduced by solving numerically the rarefied gas flow through
a duct with triangular cross section are in complete agreement with the theoretical find-
ings. The proposed approach may open a way for fast computation of rarefied gas flows
on complex geometries in the whole range of gas rarefaction including the hydrodynamic
regime.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Fully deterministic discrete velocity (or ordinates) algorithms have been extensively used in the direct numerical solution
of the Boltzmann equation or alternatively of kinetic model equations [1–4]. Of course, the involved computational effort is
significant since solving for the unknown distribution function, in a general-geometry problem, would require a six-dimen-
sional phase space grid (three variables in the physical space and three variables in the molecular velocity space), which im-
poses severe demands on computer resources (time and memory). In spite of this, the discrete velocity (DV) method is
considered as an efficient approach for solving problems in rarefied gas dynamics [5]. Even more, in certain physical systems
where, due to the flow conditions and parameters, linearization of the governing kinetic equations and reduction of the num-
ber of spatial and velocity coordinates are permitted, the DV method has shown to be probably the most powerful compu-
tational scheme for providing reliable results in the whole range of the Knudsen number [6,7]. Such problems commonly
appear in several technological fields including the emerging field of nano and microfluidics [8].

The direct differencing of kinetic equations implementing the discrete velocity approach yields a discretized coupled
integro–differential system, which is solved in an iterative manner. The convergence speed of this iterative algorithm is sat-
isfactory in highly rarefied atmospheres (large Knudsen numbers) but it slows down significantly as the atmosphere be-
comes less rarefied and finally, it becomes very slow at intermediate and small Knudsen numbers (part of the transition
as well as in the slip regimes). This slow convergence has been recently circumvented by introducing a synthetic acceleration
methodology to speed up the DV convergence rate in dense atmospheres [9–11]. That is an important advancement of the
DV algorithm since it upgrades its overall performance and it allows its efficient implementation in all flow regimes. The

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.02.015

* Corresponding author. Tel.: +30 2421074058; fax: +30 2421074085.
E-mail address: diva@mie.uth.gr (D. Valougeorgis).

Journal of Computational Physics 229 (2010) 4315–4326

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2010.02.015
mailto:diva@mie.uth.gr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


discretized version of this rapidly convergent iteration scheme has been applied so far to flow configurations, which can be
adequately described on standard orthogonal grids.

It is important to note that fast iterative algorithms for discrete ordinates particle calculations have been originated and
then extensively developed and efficiently implemented in the field of neutron and radiative transfer [12,13]. However, cor-
responding work in rarefied gas dynamics is very limited.

In the present work a fast iterative algorithm is proposed for the efficient computational solution of linear kinetic equa-
tions on triangular lattices. This non-regular lattice consisting of triangular grid elements has been recently introduced [14]
and it is very useful for generalizing kinetic type solutions to rarefied flows in domains with complex boundaries. The dis-
cretization of the accelerated scheme on such non-standard grids is not trivial. Also, the convergence rates of both the typical
and accelerated discrete algorithms are estimated by a discrete Fourier stability analysis. As far as the authors are aware of,
this is the first time that a stability analysis of discrete kinetic equations in the field of rarefied gas dynamics is presented. It
is found theoretically that the accelerated method performs significantly faster than the typical one. It is also shown that the
discrete models with increasing resolution rapidly reach the convergence rate of the continuous equations. The theoretical
findings are verified computationally be solving, as a benchmark problem, the flow of a gas through a triangular channel,
described by the linearized two-dimensional Bhatnagar–Gross–Krook (BGK) kinetic equation [14]. The dependency of the
iteration scheme on the discretization parameters in the phase space is investigated. The simulation results are in agreement
with the theoretical findings.

The presented work can be applied to more advanced kinetic model equations, such as the ES and the Shakhov models for
single gases [15], as well as the McCormack model for gaseous mixtures [16,17], in a straightforward manner.

2. Iteration schemes of kinetic equations

A description of the typical and upgraded (acceleration) iteration schemes applied to the continuous form of the govern-
ing kinetic equations is provided. In addition, the model problem used as a benchmark to test the overall efficiency of the
proposed scheme is introduced. All quantities are in dimensionless form.

2.1. Kinetic iteration

We base our discussion on the two-dimensional linearized BGK model equation

c � rf ðtþ1=2Þðc; h; xÞ þ df ðtþ1=2Þðc; h; xÞ ¼ dFðtÞ0;0ðxÞ þ SðxÞ; ð1Þ

with

Fðtþ1Þ
0;0 ðxÞ ¼

1
p

Z 2p

0

Z 1

0
f ðtþ1=2Þðc; h; xÞ expð�c2Þcdcdh; ð2Þ

which describes the fully developed flow of a gas through a channel of arbitrary cross section [14,18]. In Eqs. (1) and (2),
f(t+1/2)(c,h,x) is the unknown distribution function, x = (x1,x2) is the position vector, c M (c,h) is the molecular velocity vec-
tor with c and h denoting the magnitude and the polar angle respectively, S(x) is an optional source term, FðtÞ0;0ðxÞ is the
bulk velocity and t is the iteration index. It is noted that the bulk velocity corresponds to the zeroth-order Hermitian mo-
ment of the distribution function. Finally, d, known as the rarefaction parameter, is a very important dimensionless flow
quantity, which characterizes the rarefaction degree of the physical system. The rarefaction parameter is proportional to
the inverse Knudsen number. Roughly speaking, the flow is in the free molecular regime for d < 0.1, in the transition re-
gime for 0.1 6 d 6 10 and in the hydrodynamic regime for d > 10.

Along the boundary of the flow domain, the Maxwell diffuse reflection model is implemented. Then, the distribution func-
tion representing particles departing from the wall is written by

f ðc; x̂Þ ¼ 0; for c � n > 0; ð3Þ

where x̂ denotes the boundary position vector and n is the unit normal vector pointing towards the interior of the flow do-
main. A quantity of practical interest, used later on, is the dimensionless flow rate

G ¼ 2
A

Z Z
A

F0;0ðxÞdx1dx2: ð4Þ

Here, A is the area of the cross section. It is assumed that the hydrodynamic diameter of the channel Dh = 4A/C is unity,
where C denotes the perimeter of the channel.

The integro–differential system defined by Eqs. (1) and (2) is solved in an iterative manner as indicated by the iteration
index t. In particular at the beginning of each iteration, one introduces an old estimate FðtÞ0;0 in the right hand side of Eq. (1).
Using this estimate Eq. (1) is solved to obtain an estimate for f(t+1/2), which is introduced into Eq. (2) to obtain the new esti-
mate Fðtþ1Þ

0;0 . This iteration process, which is named ‘‘kinetic iteration” is repeated until the difference between successive esti-
mates of FðtÞ0;0 is less than a pre-assigned convergence criterion �. It has been shown that the above described iteration process
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