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Abstract

A scheme treating diffusion and remeshing, simultaneously, in Lagrangian vortex methods is proposed. The vorticity
redistribution method is adopted to derive appropriate interpolation kernels similar to those used for remeshing in inviscid
methods. These new interpolation kernels incorporate diffusion as well as remeshing. During implementation, viscous split-
ting is employed. The flow field is updated in two fractional steps, where the vortex elements are first convected according
to the local velocity, and then their vorticity is diffused and redistributed over a predefined mesh using the extended inter-
polation kernels. The error characteristics and stability properties of the interpolation kernels are investigated using Fou-
rier analysis. Numerical examples are provided to demonstrate that the scheme can be successfully applied in complex
problems, including cases of nonlinear diffusion.
� 2005 Published by Elsevier Inc.

Keywords: Numerical simulation; Computational particle methods; Vortex methods; Redistribution; Diffusion

1. Introduction

Lagrangian vortex methods [6,25] are tools for computing complex fluid flows. Several of the computa-
tional advantages of these methods are:

(1) While Eulerian methods introduce extra dispersion or dissipation, even in flows with zero velocity
gradient, such errors are minimized during advection in Lagrangian vortex methods.

(2) The condition of numerical stability is not restricted by the CFL condition.
(3) The support of particle distribution remains a small fraction of the total volume of the flow field, deter-

mined by where vorticity is confined. The method is endowed with natural �grid adaptivity�, and hence
the computational elements are utilized more efficiently.
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(4) The method provides a natural way to represent small vortical structures that arise at high Reynolds
numbers.

While Lagrangian vortex methods were originally formulated for inviscid flows, successful approaches
for viscous flows have been proposed [5,8,9,11,29,31]. In some methods, such as random walk [5] and dif-
fusion velocity methods [11], particles are transported while their strength remains fixed. In other methods,
the strength assigned to each particle is allowed to change without displacing the particles. In many cases,
more particles are introduced to capture the expanding region where vorticity is confined.

One popular algorithm is the PSE (particle strength exchange) scheme [9], in which the diffusion equation is
converted into integro-differential equations, which are discretized in space by approximating the integral
using a quadrature rule. The semi-discrete equations are again discretized in time in various different
ways—implicitly or explicitly—up to whatever order of accuracy is desired. This method has been successfully
applied to several complex flows [19,27,39,41], and has been extended to the case of anisotropic diffusion [10],
and to the case with spatially variable radius of the cutoff function [7].

The use of a quadrature rule in PSE requires relatively uniform particle distribution, and this naturally
necessitates frequent remeshing. Remeshing is also implemented in other methods, even in inviscid simulations
to satisfy other conditions. For instance, it has been observed that long-time accuracy of convection compu-
tation deteriorates severely due to the distortion of the particle distribution [6,14]. Several local regridding
schemes have been devised to solve this problem, by inserting new particles where inter-particle distance be-
comes too large [16,17,41]. These schemes are limited to geometrically simple flows, and tend to grow the num-
ber of particles rapidly, unless careful clustering and merging is also implemented. For these reasons, global
remeshing is now considered necessary in most Lagrangian particle methods, and the design and verification
of various remeshing schemes have become an active research area [1,3].

In this article, we design a scheme that treats diffusion and remeshing simultaneously and without addi-
tional ambiguity or computational overhead. The scheme, �redistribution onto a grid�, will be formulated as
an extension of the vorticity redistribution method [33], and cast in the form of interpolation kernels, which
resemble those used in inviscid remeshing [6,18].

The paper is organized as follows. In Section 2, the vorticity redistribution method is introduced. Next, we
develop the modified interpolation kernels in Section 3. The error characteristics and the stability properties of
these kernels are investigated in Section 4. We finally provide numerical examples in Section 5.

2. The redistribution method

The vorticity redistribution method, or simply the redistribution method, developed in [33] is a deter-
ministic approach to solve the constant-diffusivity diffusion equation. In this method, the fundamental
solution of the diffusion equation for each particle vorticity is approximated by a new set of particles
within a ball of a finite radius, whose locations and strengths are determined by satisfying a number
of �predictive moment matching conditions�. The latter enforce the requirement that the vorticity assigned
to the new particles have approximately the same moments, up to a certain order, as the moments of the
fundamental solution generated by the source particle. The new particle vorticity is obtained by redistrib-
uting the source particle strength onto the target particles, i.e., by transferring fractions of the source par-
ticle strength to the target particles nearby. The spatial resolution of the method is naturally defined by
the redistribution radius, that is, the radius of the ball in which the target particles for each source particle
lie.

How to obtain a redistribution formula that determines the correct redistribution fractions that satisfy
the predictive moment matching conditions depends on the specific problem of interest. When the funda-
mental solution of the diffusion equation is known explicitly, the moments of the fundamental solution
can be exactly determined, and the corresponding redistribution formula can be easily constructed [33].
However, for spatially varying or anisotropic diffusion, the explicit form of the fundamental solution is
often not available. To address this difficulty, a more general method to design redistribution formulae satis-
fying the moment matching conditions was proposed [13,32], in which the evolution equations for the mo-
ments of the fundamental solution of each source particle were discretized by explicit integration schemes,
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