Tetrahedron 73 (2017) 1668-1672

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Palladium-catalyzed direct arylation of maleimides: A simple route to bisaryl-substituted maleimides

Tetrahedro

Farnaz Jafarpour^{*}, Mitra Shamsianpour, Salumeh Issazadeh, Masoumeh Dorrani, Hamideh Hazrati

School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran

ARTICLE INFO

Article history: Received 23 September 2016 Received in revised form 19 January 2017 Accepted 27 January 2017 Available online 31 January 2017

Keywords: Boronic acids Direct arylation Maleimide Oxidative Heck reaction Palladium

ABSTRACT

Palladium-catalyzed direct arylation of maleimides via Heck as well as organoboron-mediated Heck-type reactions are developed. These methods offer an approach to a wide variety of biologically interesting 3,4-diarylmaleimide scaffolds from readily accessible starting materials. These approaches led to the feasible one-pot construction of bisaryl-substituted maleimides which have historically been problematic.

© 2017 Published by Elsevier Ltd.

1. Introduction

Bisaryl-substituted maleimides are important constituents in pharmaceutical drug candidates. The pharmaceutucal compositions comprising compounds of type I have been confirmed to be effective in treatment of metabolic bone diseases such as bone metastatic cancer, rheumatoid arthritis, periodontal disease and Paget's disease (Fig. 1).¹ Natural product based maleimides of type II are proved to show valuable photophysical properties which may have applications as molecular probes to study biological processes like intracellular trafficking, membrane association and autotox-icity.² 3-Aryl-4-indolyl-maleimide III possesses remarkable potency against Vascular endothelial growth factor receptor 2 (VEGF-R2)/KDR.³

Besides, some symmetrical or unsymmetrical bis(hetero)arylmaleimide derivatives have exhibited potent COX(Cyclooxygenase)-2 inhibitory activity and selectivity,⁴ have the potent to induce B- to Z-DNA transition⁵ and may have potential for clinical developments as antiangiogenic drugs.^{3b} Furthermore π -extended diary-Imaleimides have found some applications in organic light-emitting diodes and fluorescence devices.⁶

Given the broad spectrum of interesting properties, several research groups have aimed at preparation of these privileged structures. 3,4-Disubstituted maleimides are typically synthesized by two main approaches: a) formation of the maleimide ring in a linear synthetic sequence⁷ and b) functionalization of prehalogenated maleimides via metal-catalyzed coupling reactions.⁸ However, more synthetically viable preparation of these scaffolds via direct arylation of maleimides continues to be problematic. Very recently Zhou et al.⁹ disclosed a Heck arylation of maleimides employing a combination of KOAc and a carbonate solvent. In spite of the importance of this contribution, monoarylated products were produced predominantly and exploratory experiments revealed the necessity for N-protection and the use of bulky ligands such as DPEphos. Bearing in mind the difficulty of generating tetrasubstituted alkenes using Heck coupling, direct arylation of maleimides leading to concise synthesis of 3,4-diaryl maleimides is not precedented. Driven by the need for an efficient synthetic route to these privileged motifs, we hypothesized the development of an efficient direct arylation of unfunctionalized maleimides and their free NH derivatives via Heck as well as organoboron-mediated Heck-type reactions employing iodoarene and boronic acid coupling partners, respectively. These protocols offer ligand-free efficient conditions for construction of crowded disubstituted maleimides taking advantage of precluding installment of disposable functionalities. Furthermore, double Heck process takes

^{*} Corresponding author. E-mail address: jafarpur@khayam.ut.ac.ir (F. Jafarpour).

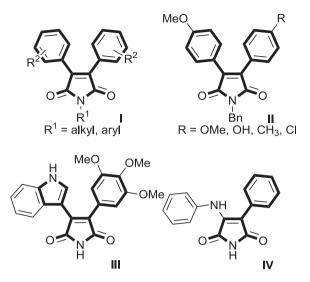
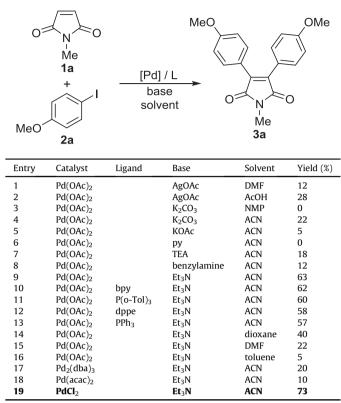


Fig. 1. Biologically active compounds containing the arylmaleimide framework.

advantage of site selective C-functionalization of free-NH maleimides.


2. Results and discussion

To test the hypothesis, model Heck coupling of maleimide **1a** with iodoanisole **2a** was conducted. Different reaction parameters including solvent and base were varied, and via a combination of Pd(OAc)₂ and an alkylamine in acetonitrile one pot direct diarylation of maleimide was pleasingly achieved in 63% yield (Table 1, entries 1-9). The reaction efficiency was comparable or slightly lower in the presence of alkyl/aryl phosphine or pyridine ligands (entries 10–13). We also screened solvents and acetonitrile proved to be superior to other solvents such as DMF, DMSO, toluene, 1,4dioxane, THF and NMP (entries 14-16). Finally the screening reactions were performed with respect to palladium sources and it turned out that replacement of Pd(OAc)₂ with PdCl₂ ensures the satisfactory result (entries 17-19). We were delighted to see that under the optimized reaction conditions, iodoarene (2.0 eq.), PdCl₂ (10 mol %), and NEt₃ (2.0 eq.) in acetonitrile at 100 °C for 24 h, 3,4bis(4-methoxyphenyl)maleimide 3a was obtained in 73% isolated yield (entry 19). It is noteworthy that 3,4-diarylmaleimides with introduced methoxy substituents on the phenyl rings have exhibited promising P-glycoprotein- modulating activity in Pgpover expressing breast cancer cell lines without causing any cytotoxicity toward normal cells.¹⁰

With the optimized reaction conditions in hand, the scope of double-Heck process was explored and the results are summarized in Table 2. First Heck cross-coupling of N-methylmaleimide with iodoarenes possessing varying steric and electronic properties was investigated. Good to moderate yields of bisarylmaleimides were attained employing iodobenzene and toluene (3b and 3c). 4-Bromotoluene was also tolerated under the reaction conditions where the desired product 3c was obtained albeit in 24% yield. Surprisingly, 1-iodonaphthalene with a sterically demanding substitution pattern led to a monoarylated maleimide 4d in 88% yield, where the diarylated isomer was not observed at all. Double Heck coupling is likely disfavored due to steric repulsion between two bulky naphthalene groups on the double bond. As expected, compared to 4-iodoanisole, fluorinated arenes such as 4-fluoroand 4-trifluoromethylbenzene exhibited lower reactivity (3e and 3f). More electron deficient arenes with nitro substitutions remained unreactive under the optimized reaction conditions.

Table 1

Optimization of reaction condition^a.

 $^a\,$ Reaction conditions: maleimide 1a (0.05 mmol, 1 eq.), iodoanisole 2a (2 eq.), Pd catalyst (10 mol%), ligand (20 mol%), base (2 eq.), solvent (0.1 mL) at 100 $^\circ$ C for 24 h.

Notably, *N*-aryl and *N*-benzylmaleimides were tolerated and arylated maleimides were obtained in 41–80% yields. Gratifyingly, free (NH) maleimides also were found to be amenable to this crosscoupling reaction and regioselective direct C-arylations proceeded smoothly. To the best of our knowledge it is the first report on direct arylation of maleimides with no requisite for N-protection which is often necessary.

Motivated by these results, next we set out to explore direct diarylation of maleimides via organoboron-mediated Heck-type reaction¹¹ considering the commercial availability and low toxicity of boron reagents. In this regard, *N*-methylmaleimide **1a** was reacted with (4-methoxyphenyl)boronic acid **5a** (Scheme 1). To our delight, direct diarylation of maleimide employing boronic acid was simply achieved using some altered reaction conditions and adduct **3a** was obtained in 52% isolated yield (Table S2, Supporting Information). A similar trend was observed using various boronic acids as coupling partners where arylated *N*-alkyl(aryl) maleimides were obtained in 22–73% yields (Scheme 1).

3. Summary and conclusions

In conclusion, we have discovered a simple route to diarylmaleimides which are of potent interest in medicinal chemistry via a one pot sequential double Heck arylation reaction. Construction of highly functionalized maleimides which is not feasible via direct arylation of maleimides is also achieved via an oxidative Heck coupling employing readily accessible arylboronic acids. The substrate scope is broad and further investigations to extend the substrate scope to more synthetic applications are underway. Download English Version:

https://daneshyari.com/en/article/5212594

Download Persian Version:

https://daneshyari.com/article/5212594

Daneshyari.com