Tetrahedron 72 (2016) 8493-8501

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of 2-(2-hydroxyaryl)alkenylphosphonium salts from phosphine oxides *via* ring-closing ring-opening approach and their antimicrobial evaluation

Tetrahedro

Dmitry A. Tatarinov ^{a, b, *}, Denis M. Kuznetsov ^{a, b}, Alexandra D. Voloshina ^a, Anna P. Lyubina ^{a, b}, Anastasiya S. Strobykina ^a, Fahima K. Mukhitova ^c, Fedor M. Polyancev ^a, Vladimir F. Mironov ^{a, b}

^a A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russian Federation

^b Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation

^c Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan, 420111, Russian Federation

ARTICLE INFO

Article history: Received 8 September 2016 Received in revised form 27 October 2016 Accepted 7 November 2016 Available online 9 November 2016

Keywords: Phosphonium salts Grignard reagents Cyclization Ring opening Quasiphosphonium salts Phosphine oxides

ABSTRACT

A new two-step synthesis of phosphonium salts from phosphine oxides using Grignard reagents is reported. This approach involves a cyclization of Z-dialkyl-(diaryl)[2-(5-chloro-2-hydroxyphenyl)-2-phenylvinyl]phosphine oxides under the action of sulfinyl chloride with the formation of 2,2-dialkyl(diaryl)-6-chloro-4-phenyl-2*H*-1,2-benzoxaphosphinin-2-ium chlorides followed by ring opening under the action of organomagnesium compounds. The method was successfully applied to prepare a series of a new phosphonium salts bearing phenolic moiety with a wide range of substituents at phosphorus atom. Synthesized phosphonium salts shows high antibacterial and antifungal *in vitro* activity and low toxicity towards human red blood cell.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Phosphonium salts are an extensively studied class of organophosphorus compounds. They have found application in asymmetric phase-transfer catalysis,^{1–4} as organocatalyst⁵ as well as ionic liquids.^{6,7} The introduction of phosphonium functionality onto either natural or synthetic frameworks may lead to new pharmaceutically attractive compounds with antitumor^{8–12} and antimicrobial activities.^{13–15} Recently the structure, synthesis and practical application of polymeric materials containing a quaternary phosphonium moiety as antimicrobial agents have been observed.¹⁶ In addition, some phosphonium salts are able to the reversible inhibition of cholinesterases^{16,17} and possess a

* Corresponding author. A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russian Federation.

E-mail address: datint@iopc.ru (D.A. Tatarinov).

mitochondrion targeted antioxidant activity.^{18–24}

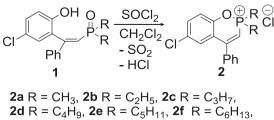
The reactions of P(III) derivatives with alkyl halides or carbonyl compounds in the presence of hydrogen halide are commonly used for the obtaining of the phosphonium salts.^{13,14} In such a reactions triphenyl- or tributylphosphines or rarely other trialkyl derivatives are usually applied. A few works on synthesis of phosphonium salts based on the reaction of tertiary phosphines with ortho-quinones^{25,26} should also be noted. Recent advances of these synthetic approaches are widely reviewed.^{13,14}

Earlier, we have shown by only one example that the reaction of 2-(5-chloro-2-hydroxyphenyl)-2-phenylvinyl diethylphosphine oxide with excess of bromine leads to the cyclic phosphonium salts.²⁷

Here, we report a two-step synthesis of the functionally substituted phosphonium salts **9**, **10** bearing a hydroxy-group in the position delta to phosphorus from quasiphosphonium salts **2**. This approach has been reported briefly earlier as the conference proceedings without any experimental details.²⁸

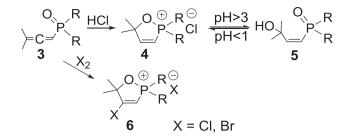
2. Results and discussion

Starting phosphine oxides **1** were obtained from 2,6-dichloro-4phenylbenzo[*e*]-1,2-oxaphosphinine-2-oxide using a previously reported method.^{29–32} The first stage of the proposed approach includes the cyclization of the corresponding phosphine oxides **1** using sulfinyl chloride under mild conditions (CH₂Cl₂, r.t.) to form quasiphosphonium salts **2** with quantitative yield under the conditions which were similar to those reported earlier (Scheme 1).³³

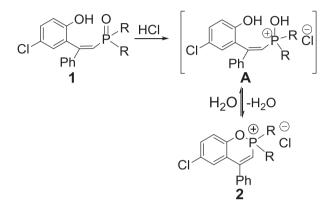

In a related work, in 1978, an electrophilic cyclization of allenylphosphine oxides **3** and products of their transformation – phosphine oxide **5** to cyclic phosphonium salts **4** by bubbling of gaseous HCl was reported.³⁴ Under those reaction conditions, phosphine oxide **5** was transformed to quasiphosphonium species **4** even in water solution at pH \leq 1 (Scheme 2).

Similar results were obtained when allenylphosphine oxides **3** were halogenated and transformed to the halogen containing cyclic quasiphosphonium salts **6**.³⁵

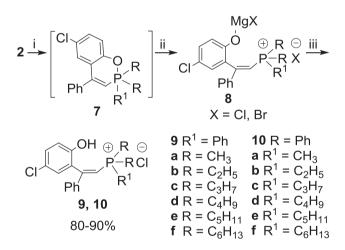
In contrast to reported data,³⁴ a trace amount of water leads to the hydrolysis of quasiphosphonium salts **2** back to phosphine oxides **1**. We attempted to use gaseous HCl for the cyclization of phosphine oxides **1** as described earlier (Scheme 3).³⁴ According to ³¹P NMR data the reaction mixture contained equal amounts of phosphine oxides adduct with hydrogen chloride **A** (δ_P 60–70 ppm)^{36–38} and quasiphosphonium salts **2** (δ_P 85–95 ppm). The **1**: **2** ratio was unchanged even in the presence of a large excess of HCl. It points out to the reaction reversibility and ability of quasiphosphonium salts **2** to hydrolyze under these conditions.


Quasiphosphonium salts **2** contain a phosphorus atom, which is ready available for nucleophilic attack. We assumed that the reaction of the cyclic salts **2** with such nucleophiles as organomagnesium compounds could result in a new P–C bond formation and give quaternary phosphonium salts (Scheme 4). The reactions were carried out in THF under inert atmosphere. To a stirred solution of quasiphosphonium salts **2** a freshly prepared Grignard reagent was added *via* cannula. The reaction occurs with a slight exothermic effect and color change from light brown to dark red.

In the ³¹P NMR spectrum registered *immediately* after the addition of Grignard reagent to compound **2** only one signal was observed (δ_P – 58 ppm) which may belong to the P(V) intermediate **7**. This signal disappeared after 30 min and the ³¹P NMR spectrum contained the signal related to the phosphonium species **8** ($\delta_P \sim 12-20$ ppm). After hydrolysis with aqueous hydrochloric acid, the reaction mixture becomes yellow and only the signal of compounds **9**, **10** ($\delta_P \sim 12-20$ ppm) was observed in ³¹P NMR spectrum (CDCl₃). It is likely that, magnesium halide reacts with intermediate **7** as Lewis acid with ring opening to give magnesium salt **8**. After hydrolysis with aqueous hydrochloric acid, magnesium salts **8** transformed to phosphonium compounds **9**, **10**. Herewith, chemical shifts of the signals in ³¹P NMR spectra of compounds **8** and **9**, **10** are not significantly differred. In all cases, phosphonium salts **9**, **10** were obtained with high yields.



2g R = Ph


Scheme 1. Synthesis of quasiphosphonium salts 2.

Scheme 2. Electrophilic cyclization of allenylphosphine oxides 3.

Scheme 3. Reversibility of the reaction of phosphine oxide 1 with HCl.

Reagents and conditions: i. R¹MgBr, THF, -MgX₂; ii. MgX₂, THF; iii. H₂O, HCI excess

Scheme 4. Synthesis of phosphonium salts 9, 10.

The isolation of compounds **7** directly from reaction mixture was difficult due to its instability in reaction condition (magnesium salts, Grignard reagent excess), therefore, we attempted to obtain the supposed phosphorane **7** by the treatment of phosphonium salt with a base. It was turned out that the addition of ammonium hydroxide to the suspension of salt **9a** in benzene resulted in dissolving of phosphonium salt and the formation of phosphorane **7a** which smoothly reacts with hydrochloric acid to form back the phosphonium salt **9a** (Scheme 5). A cyclization of phosphonium salts **9, 10** to phosphorane **7** followed by the ring opening under the action of acid is a convenient method for counter ion replacement.

The structure of all new compounds was established using

Download English Version:

https://daneshyari.com/en/article/5212671

Download Persian Version:

https://daneshyari.com/article/5212671

Daneshyari.com