Tetrahedron 72 (2016) 7050-7058

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

On the behavior of bis(sulfonyl)nitrobutadienes towards primary amines: a convenient access to 1-alkyl-2-aryl-4-(phenylsulfonyl) pyrroles

Lara Bianchi^{a,*}, Gianluca Giorgi^b, Massimo Maccagno^a, Giovanni Petrillo^a, Carlo Scapolla^a, Cinzia Tavani^a

^a Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, I-16146 Genova, Italy ^b Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro, I-53100 Siena, Italy

ARTICLE INFO

Article history: Received 17 June 2016 Received in revised form 5 September 2016 Accepted 20 September 2016 Available online 21 September 2016

Keywords: Nitrogen heterocycles Michael additions Vinylic nucleophilic substitutions Nitrobutadienes Pyrroles

1. Introduction

Aza-heterocycles are certainly compounds of outstanding interest from a biological, pharmacological and, broadly speaking, applicative point of view: accordingly new synthetic approaches are continuously investigated, as testified by the gigantic number of papers which appear every year in the literature.¹

Within our long-standing project centered on the synthetic versatility of nitrobutadiene building-blocks deriving from the initial ring-opening of adequately functionalized nitro-thiophenes,^{2,3} one of the privileged targets throughout has been the recognition of convenient high-yielding, atom-economic, possibly metal-free processes able to build-up heterocycles of different nature, size and structure: a goal that can be reached, for instance, when finely modulating the reactivity of nitrobutadienes by means of a careful choice of type, number and position of substituents on the diene frame or the employment of suitable reagents and/or experimental conditions. Both S-⁴ and N-heterocycles can thus be effectively prepared: as far as the latter are concerned, besides earlier reports from our laboratory,⁵ the preparation of

ABSTRACT

The conjugated bis(sulfonyl)nitrobutadienes **1** undergo, with primary amines, competitive $MeSO_2$ replacement [vinylic substitution at C(1)] versus aza-Michael addition to the nitroethenyl C(3)–C(4) double bond. The latter pathway eventually leads to the trisubstituted pyrroles **2** and conditions have been optimized in order to maximize the yield of such polyfunctionalized heterocycles. Interestingly, in trifluoroethanol tetrasubstituted pyrroles **7** are also formed, thanks to a final aromatization via oxidation by 'endogenous' nitrite.

© 2016 Elsevier Ltd. All rights reserved.

polysubstituted pyrazoles,⁶ pyridazines,^{6a,7} isoxazolines,^{6b} carbazoles⁸ and N-fused pyrroles⁹ has been more recently successfully accomplished.

A few years ago we reported that the reaction of symmetrical 2,3-dinitro-1,3-butadienes with primary amines in 1:1 $CH_2Cl_2/$ MeOH is a useful approach to polysubstituted pyrrolidines and to pyrrolines and pyrroles therefrom (Scheme 1).¹⁰ The process involves a double aza-Michael addition, the second of which very effectively leading, notwithstanding a disfavored 5-endo-trig cyclization, to the pyrrolidine ring.

Herein we report on the behavior of unsymmetrical bis(sulfonyl) nitrobutadienes (obtained from the initial ring-opening of 3-phenylsulfonyl-4-nitrothiophene with pyrrolidine)¹¹ towards primary amines: the observed competition leading to results endowed with both mechanistic and synthetic interest.

2. Results and discussion

Preliminary tests were carried out on the model reaction of 1methylsulfonyl-3-nitro-2-phenylsulfonyl-4-*p*-tolylbutadiene (**1a**) with butylamine in the experimental conditions previously adopted for the reaction in Scheme 1, i.e., 3.3 equiv of amine in 1:1 $CH_2Cl_2/MeOH$ at room temperature.¹⁰ Interestingly enough, rather unexpectedly, under such conditions two products could be

Tetrahedro

^{*} Corresponding author. E-mail address: lara.bianchi@unige.it (L. Bianchi).

Scheme 1. 5-Membered N-heterocycles from 1,4-diaryl-2,3-dinitro-1,3-butadienes and primary amines.¹⁰

 $\textit{Reaction conditions: } 1:1 \ CH_2Cl_2/MeOH, r.t., 1 \ h; \ amine: 3.3 \ mol \ equiv.$

Scheme 2. Results of the reaction of nitrobutadiene 1a with model primary and secondary amines.

isolated (Scheme 2; entry 2 of Table 1), viz. the appealing 1,2,4trisubstituted pyrrole **2aa**, as the main product in a definitely rewarding 61% yield, and **3aa** (33%), as the straightforward result of a selective nucleophilic vinylic substitution (S_NV) on the terminal carbon of the bis(sulfonyl)substituted double bond. For the sake of comparison, when reacted with the secondary amine pyrrolidine under the same conditions, **1a** exclusively led to the diene **4aa** (90%), i.e., the substitution product analogous to **3aa** (Scheme 2), through a highly selective and efficient S_NV process which stoichiometrically consumes 2 equiv of amine: accordingly, no significant change in the yield of **4aa** was observed on switching from 3.3 to 2.2 equiv of pyrrolidine.

From a mechanistic point of view, the formation of **2aa** could be the result of different conceivable reaction pathways. For instance, it could originate via a follow-up process from the substitution

 Table 1

 Results from reactions of 1a

Results from reactions of $\mathbf{1a}$ with butylamine under different experimental conditions

Exp.	Solvent	BuNH ₂ (molar equiv)	T (°C)	<i>t</i> (h)	2aa (%)	3 aa (%)
1	1:1 CH ₂ Cl ₂ /MeOH	2.2	rt	1	42	54
2	"	3.3	rt	1	61	33
3	"	6.6	rt	1	76	18
4	"	1.1+1.1 K ₂ CO ₃	rt	1	30	51
5	"	1.1+1.1 TEA	rt	1	37	56
6	"	1.1+5.5 TEA	rt	1	81	16
7	"	3.3	50 °C	0.5	45	36
8	"	6.6	45 °C	1	66	_
9	"	3.3	$-50\ ^{\circ}C$	24	44	29
10	"	"	−78 °C	24	34 (49) ^a	20 (29) ^a
11	CH ₂ Cl ₂	"	rt	1	64	10
12	MeOH	"	rt	2	75	9
13	TFE ^b	"	rt	1	85 ^c	8
14	"	6.6	rt	1	71 ^d	_

 $^{\rm a}$ Unreacted substrate ${\bf 1a}~(30\%)$ also recovered (the yield in parentheses refers to the reacted substrate).

 $^{\rm d}\,$ 20% of the tetra substituted pyrrole ${\bf 7aa}$ (see text) also isolated. product **3aa** (Scheme 3), whereby an intramolecular aza-Michael addition (step 3a) would be followed by aromatization through amine-promoted HNO₂ elimination (step 3b).

Scheme 3. Mechanistic hypothesis for the formation of pyrroles 2 through dienes 3.

As a matter of fact, the treatment of isolated **3aa** with 1 equiv of butylamine in 1:1 CH₂Cl₂/MeOH at room temperature did lead to the formation of some **2aa**, although in definitely longer reaction times (40% after 4 days, with some unreacted **3aa** still present in a rather complex final mixture). The sluggishness of any 'direct' **3aa** to **2aa** conversion cannot be attributed, on the other hand, to the need for configurational isomerization of **3aa** in order to attain the correct spatial arrangement for an effective intramolecular nitrogen attack onto C(4). This is because the isolated diene already has the required *E*-configuration at the C(1)–C(2) double bond (cf. the ORTEP drawing in Fig. 1a, relevant to the ethylamino derivative **3ac**, which provided the most suitable crystals for X-ray analysis; for

^b Trifluoroethanol.

^c 4% of the tetrasubstituted pyrrole **7aa** (see text) also isolated.

Download English Version:

https://daneshyari.com/en/article/5212765

Download Persian Version:

https://daneshyari.com/article/5212765

Daneshyari.com