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a b s t r a c t

This paper presents a method of combining anisotropic mesh adaptation and adaptive
time-stepping for Computational Fluid Dynamics (CFD). First, we recall important features
of the anisotropic meshing approach using a posteriori estimates relying on the length dis-
tribution tensor approach and the associated edge based error analysis. Then we extend the
proposed technique to contain adaptive time advancing based on a newly developed time
error estimator. The objective of this paper is to show that the combination of time and
space anisotropic adaptations with highly stretched elements can be used to compute high
Reynolds number flows within reasonable computational and storage costs. In particular, it
will be shown that boundary layers, flow detachments and all vortices are well captured
automatically by the mesh. The time-step is controlled by the interpolation error and pre-
serves the accuracy of the mesh adapted solution. A Variational MultiScale (VMS) method
is employed for the discretization of the Navier–Stokes equations. Numerical solutions of
some benchmark problems demonstrate the applicability of the proposed space–time error
estimator. An important feature of the proposed method is its conceptual and computa-
tional simplicity as it only requires from the user a number of nodes according to which
the mesh and the time-steps are automatically adapted.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Computational Fluid Dynamics simulations have considerably attracted researchers in the last few decades especially
with the continuous needs for explanations of the naturally occurring physical flow phenomena that we observe on a daily
basis in our surroundings, including pipe flow, flow around airfoils, greenhouse effect and climate predictions, respiratory
system and blood circulation, convective heat transfer inside combustion chambers and industrial furnaces and many other
applications. The latter phenomena poses deep and complicated scientific problems the resolution of which requires consid-
erable computational resources and long time calculations. Therefore to perform real CFD simulations, accurate solutions
within reasonable computational times and costs are highly desirable. Such an objective opens the door to the emergence
of numerical methods that aim at optimizing both the spatial and the temporal discretizations [1–6].

There has been a tremendous amount of research designing and implementing methods for space adaptation. In partic-
ular, anisotropic mesh adaptation has proved to be a powerful strategy to improve the efficiency of finite element/volume
methods, thus reducing storage requirements as well as the computational time. It enables the capture of scale heterogene-
ities that can appear in numerous physical problems including those having boundary layers, shock waves, edge singularities
and moving interfaces [1,7–11].

0021-9991/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.12.010

⇑ Corresponding author. Tel.: +33 (0) 4 92 95 74 58; fax: +33 (0) 4 92 38 97 52.
E-mail address: thierry.coupez@mines-paristech.fr (T. Coupez).

Journal of Computational Physics 241 (2013) 195–211

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2012.12.010&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2012.12.010
mailto:thierry.coupez@mines-paristech.fr
http://dx.doi.org/10.1016/j.jcp.2012.12.010
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


In this work, our interest is in time-step adaptation [12–15]. More precisely, in the combination of time and space aniso-
tropic adaptations applied to time-dependant multiphase flows at high Reynolds number. For this purpose, we revisit the
theory developed in [1] on anisotropic meshing and modified and extend it to contain an analysis of both space and time
interpolation errors. The resulting space–time adaptive algorithm is independent of the properties of the problem at hand
and that would significantly lower the computational cost and improve the global accuracy of the calculations. Based on
the information given by the derived error estimator in space and the solutions at the previous times, the main idea is to
automatically computes an appropriate time-step for the following computations.

Recall that several approaches to build easily unstructured anisotropic adaptive meshes are often based on local modifi-
cations [16–19] of an existing mesh. In fact, it mainly requires extending the way to measure lengths following the space
directions and can be done by using a metric field to redefine the geometric distances. In parallel, theories about anisotropic
a posteriori error estimation (see [20,21]) have been well developed, leading to some standardization of the adaptation pro-
cess; development of metrics from the analysis of the discretization error and the steering of remeshing by these metrics.

In this paper, we retain the use of a metric constructed directly at the node of the mesh without any direct information
from the element, neither considering any underlying interpolation (see [1]). It is performed by introducing a statistical con-
cept: the length distribution function. A second order tensor is used to approximate the distribution of lengths defined by
gathering the edges at the node. Using such a technique, we compute the interpolation error along and in the direction of
each edge.

The novelty of this paper resides more on implementing a new procedure to compute the metric and the stretching factor.
The motivation behind these improvements is to keep only one user parameter, the number of nodes, that links and steers
both the space and time adaptation. Moreover, we present an extension of this approach to take into account multicompo-
nent fields (tensors, vectors, scalars). Indeed, rather than considering several metric intersections and thus having much
computations to perform for coupled systems, we propose herein an easy way to account for different fields in an a posteriori
analysis while producing a single metric field. We will show that the proposed method serves as a powerful tool for approx-
imating multiphase flow problems as it accounts for both the levelset function and all components of the velocity field in
only one metric tensor. Finally, we present and detail the implementation aspects to obtain an adaptive meshing under
the constraint of a given fixed number of nodes. With such an advantage, we can provide a very useful tool for practical
time-dependant incompressible flow problems and avoid a drastic increase in the number of nodes.

The leading idea of this work is then to show that by applying the proposed space–time adaptive algorithm to the recently
developed flow solver [22], based on a Variational MultiScale (VMS) method, we are able to produce very good stability and
accuracy properties for high Reynolds number flows. In particular, for meshes with highly stretched elements we use an
appropriate definition of the stabilization parameters using the directional element diameter.

We aim at testing the performance of the space–time adaptive algorithm on applications that exhibit both spatial heter-
ogeneities and temporal multi-scale phenomena. The first application tests the ability of the developed method to detect
different layers of the solution when both the velocity and its gradient are subject to rapid variations. For these reasons,
we consider the unsteady Navier–Stokes equations inside the lid driven cavity at different Reynolds numbers and the flow
around a circular cylinder benchmark problems. The second type of simulation justifies the ability to reproduce the right
evolution of the three-dimensional fluid buckling phenomena. It focuses on free surface and interface problems using a lev-
elset method.

The paper is structured as follows. In Section 2, we introduce the node based metric framework and describe the aniso-
tropic mesh adaptation procedure governed by the length distribution tensor. In Section 3, the interpolation edge error for
multicomponent fields is described. Section 4 presents the time interpolation error analysis and the associated time adaptive
algorithm. The developed VMS Navier–Stokes solver is outlined in Section 5. Finally, Section 6 provides some numerical re-
sults and examples showing the capability of the new highly parallelized space–time anisotropic mesh adaptation.

2. Construction of an anisotropic mesh

In [1], we have developed an a posteriori edge based spatial error estimator relying on the length distribution tensor ap-
proach. The anisotropic adaptation involves building a mesh based on a metric map, which means a mesh with edges of unit
length for the given metric field. It provides both the size and the stretching of elements in a very condensed information
data. Working on a nodal based metric, an anisotropic mesh adaptation procedure is obtained under the constraint of a fixed
number of nodes. The details of this technique can be found in [1]. In this section, we retrace the main steps of the construc-
tion of this adaptive procedure.

2.1. Edge based error estimation

We consider u 2 C2ðXÞ ¼ V and Vh a simple P1 finite element approximation space:

Vh ¼ wh 2 C0ðXÞ;whjK 2 P1ðKÞ;K 2 K
n o

;

where X ¼
S

K2KK and K is a simplex (segment, triangle, tetrahedron, . . .).
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