ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Efficient and practical organocatalytic system for the synthesis of cyclic carbonates from carbon dioxide and epoxides: 3-hydroxypyridine/tetra-*n*-butylammonium iodide

Xiangyong Wang, Lin Wang, Yingying Zhao, Koichi Kodama, Takuji Hirose*

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

ARTICLE INFO

Article history: Received 30 November 2016 Received in revised form 4 January 2017 Accepted 6 January 2017 Available online 10 January 2017

Keywords:
Carbon dioxide
Cyclic carbonate
3-Hydroxypyridine
Tetra-n-butylammonium iodide
Hydrogen bond

ABSTRACT

An efficient and practical organocatalytic system comprising 3-hydroxypyridine and tetra-n-buty-lammonium iodide was developed for the synthesis of cyclic carbonates from carbon dioxide and epoxides under mild conditions (1 atm CO_2 , 25–60 °C) without organic solvent. By comparing with related hydroxypyridine derivatives, the effects of the hydroxyl group, the acidity and the steric factor, were discussed. Study on the mixtures of CO_2 and N_2 in various ratios indicated that the yield depends on CO_2 content, due to the solubility of CO_2 in the reaction mixture. The system was also shown not to be deteorated by the presence of H_2O_2 , air or O_2 .

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Current CO_2 emissions into the earth's atmosphere have raised serious environmental and societal concerns in connection with the effect of CO_2 on global warming as a major greenhouse gas. As the main sources of CO_2 emission are the combustion of carbonaceous materials and animal metabolism, the reduction of CO_2 production has become an important and challenging research topic. $^{1.2}$ As an abundant, nontoxic, nonflammable, easily available, and renewable carbon resource, CO_2 is a very attractive carbon feedstock. $^{3-8}$ Therefore, the chemical fixation of CO_2 into valuable organic chemicals has attracted much attention as a goal of environmental protection and sustainable development. One of the most successful examples is the synthesis of cyclic carbonates from CO_2 and epoxides. These carbonates are valuable chemicals that can be used as polar aprotic solvents, electrolytes for lithium secondary batteries, and synthetic intermediates for pharmaceuticals and polymers. $^{9-13}$

In past decades, various homogeneous and heterogeneous catalysts have been developed for coupling reactions between CO_2 and epoxides, including metal oxides, ^{14,15} modified molecular

* Corresponding author.

E-mail address: hirose@apc.saitama-u.ac.jp (T. Hirose).

sieves, 16,17 alkali metal salts, 18 organometallic complexes, 19,20 and ionic liquids. $^{21-26}$ However, many of these catalytic systems require high temperatures, high CO_2 pressures, or toxic polar solvents and the reaction under milder conditions is still an active research topic.

Many metal-based catalytic systems have been developed for the synthesis of cyclic carbonates. In recent years, on the other hand, the number of organocatalytic systems has been drastically increasing because organocatalysts offer several advantages, being inexpensive, robust, nontoxic, and bench-stable.²⁷ Until now, several organocatalysts that contain functionality such as hydroxy groups, ^{28–33} amino groups, ³⁴ and carboxy groups ³⁵ have been well recognized for playing important roles frequently combined with a halide salt as a co-catalyst. Such organocatalysts activate an epoxide and/or CO₂ to facilitate the nucleophilic ring-opening of the epoxide by the halide ion and/or following addition reaction with CO2. Recently, we developed an organocatalytic system composed of 2-hydroxymethylpyridine and tetra-n-butylammonium iodide (TBAI).³⁶ We proposed that 2-hydroxymethylpyridine serves as a bifunctional catalyst and its hydroxyl group (hydrogenbonding donor) and nitrogen atom (Lewis base) activate the epoxide and coordinate to CO₂, respectively.^{37,38} As a new organocatalyst with a stronger hydrogen-bonding donor group, herein, we report 3-hydroxypyridine/TBAI as a new catalyst system for the synthesis of cyclic carbonates under mild and economical conditions such as solvent-free, atmospheric pressure of CO₂, moderate temperature (Scheme 1).

2. Results and discussion

2.1. Reaction with hydroxypyridine-TBAI systems

Although the application of various organic bases to CO_2 activation or absorption has been reported, $^{39-44}$ we have shown that pyridine is not a good catalyst for the cycloaddition of CO_2 and epoxides in the presence of TBAI at ambient pressure. 36 However, as mentioned above, hydroxy groups are good activators of epoxides due to hydrogen bond formation. $^{28-33,36}$ Therefore, hydroxypyridines were expected to be alternative catalysts for the cycloaddition of CO_2 and epoxides. We studied three hydroxypyridine isomers $\mathbf{1}\mathbf{-3}$ (Scheme 2) as simple and easily available organocatalysts, in combination with tetra-n-butylammonium halide as a co-catalyst, to form a new catalytic system for the synthesis of cyclic carbonate from CO_2 and epoxides.

Catalysts **1–3** were screened with the same amount of TBAI as a co-catalyst using 1,2-epoxyhexane (**4a**) as a substrate at 40 °C under atmospheric pressure of CO_2 for 24 h. The results are summarized in Table 1. Good to excellent yields of 4-butyl-1,3-dioxolan-2-one (**4b**) were obtained, with no by-products detected in the experiments (Table 1, entries 1–3). As reported previously,³⁶ pyridine was ineffective under the same conditions (Table 1, entry 4). The effect of the hydroxyl group, therefore the hydrogen bonding ability, is evident in the reaction between CO_2 and an epoxide, as mentioned previously.^{28–33,36} When **2** and TBAI were used individually, both gave poor yields (Table 1, entries 5 and 6). Thus, the high catalytic activity was realized by the cooperative effect of hydroxypyridines and TBAI.^{28,29,31,36}

Kleij et al. worked on the combinations of various phenols and TBAI for the cycloaddition of CO₂ and epoxides in methyl ethyl ketone.²⁹ In their work, simple phenol afforded only 15% yield from **4a** under 10 bar at 45 °C while pyrogallol gave 100% yield (93% isolated yield) under the same condition and 54% yield under 2 bar. Comparing with the present result of **2** (95% isolated yield under 1 atm and 40 °C; Table 1, entry 2), the solvent-free system seems effective for the phenol—TBAI system. In fact we found both phenol and pyrogallol gave comparable or surpassing yield (97% isolated yield) under the present conditions, that is in combination TBAI with no solvent (entries 12 & 13).

On the other hand, Shi et al. studied the effect of *p*-methoxyphenol combined with several bases and found that high yield of 98% is achieved with *N*,*N*-dimethylaminopyridine (DMAP) under high CO₂ pressure and temperature (3.57 MPa, 120 °C) but only 20% is obtained using pyridine. ³³ It is also interesting that they observed *p*-toluenesulfonic acid, much stronger acid, and DMAP gave poor yield of 10% under the same condition. We tried the combination of **2** and DMAP to obtain almost no carbonate (Table 1, entry 7). Under the present reaction conditions (1 atm CO₂, 40 °C), **2** works very efficiently in combination with TBAI.

Interestingly, the reaction yield varied depending on the structure of the hydroxypyridine: **2** afforded the best result, followed by

Scheme 1. Synthesis of cyclic carbonates from CO₂ and epoxides.

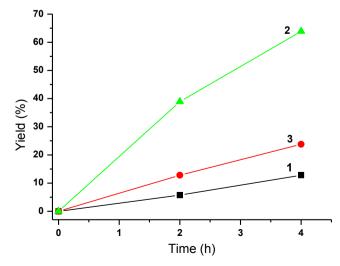

Scheme 2. Structures of hydroxypyridines and pKa values of the hydroxy groups.

Table 1Reaction of 1,2-epoxyhexane with CO₂ using various catalysts.^a

Entry	Catalyst	Co-catalyst	Yield ^b (%)
1	1	ⁿ Bu₄NI	67
2	2	ⁿ Bu ₄ NI	95
3	3	ⁿ Bu ₄ NI	86
4	pyridine	ⁿ Bu₄NI	10
5	2	_	6
6	_	ⁿ Bu₄NI	9
7	2	DMAP	0
8	2-methyl-3-hydroxypyridine	ⁿ Bu₄NI	95
9	2,4-dimethyl-3-hydroxypyridine	ⁿ Bu₄NI	83
10	2	ⁿ Bu ₄ NBr	82
11	2	ⁿ Bu ₄ NCl	36
12	phenol	ⁿ Bu₄NI	97
13	pyrogallol	ⁿ Bu₄NI	97

^a Reaction conditions: **4a** (5.0 mmol), 40 $^{\circ}$ C, CO₂ (1 atm), 24 h, Catalyst (5.0 mol%), Tetrabutylammonium halide (5.0 mol%), Solvent-free.

3 and then **1** (Table **1**, entries 1–3). To study the intrinsic catalytic activity in detail, kinetic studies of the catalytic conversion of CO_2 and **4a** to **4b** were carried out using **1**, **2**, or **3** and TBAI as cocatalysts for 4 h. The resulting kinetic curves of three different catalysts are shown in Fig. 1 and summarized in Table S1. Catalyst **2** showed the highest catalytic activity, with reaction rates in the order **2** > **3** > **1**, affording the TON of 7.8 for **2** in the initial 2 h while those of **1** and **3** were 1.5 and 3.3, respectively. Such a difference can

Fig. 1. Comparative kinetics in the formation of **4b** from **4a** and CO_2 using **1–3** as catalysts. Reaction conditions: **4a** (5.0 mmol), CO_2 (1 atm), catalyst (5.0 mol%), TBAI (5.0 mol%), CO_2 (1 atm), catalyst (5.0 mol%), CO_2 (1 atm), catalyst (5.0 mol%), CO_2 (1 atm), catalyst (5.0 mol%), CO_2 (1 atm), CO_2 (1 a

^b Isolated product obtained after chromatographic purification.

Download English Version:

https://daneshyari.com/en/article/5212824

Download Persian Version:

https://daneshyari.com/article/5212824

Daneshyari.com