ELSEVIER #### Contents lists available at ScienceDirect ### Tetrahedron journal homepage: www.elsevier.com/locate/tet # Synthesis of *N*-pyridyl azoles using a deprotometalation-iodolysis-*N*-arylation sequence and evaluation of their antiproliferative activity in melanoma cells Madani Hedidi ^{a,b,†}, William Erb ^{a,*}, Ghenia Bentabed-Ababsa ^{b,*}, Floris Chevallier ^a, Laurent Picot ^c, Valérie Thiéry ^{c,*}, Stéphane Bach ^{d,*}, Sandrine Ruchaud ^d, Thierry Roisnel ^e, Vincent Dorcet ^e, Florence Mongin ^a - ^a Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus de Beaulieu. 35042 Rennes. France - b Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences, Université d'Oran 1 Ahmed Ben Bella, BP 1524 El M'Naouer, 31000 Oran, Algeria - ^c Laboratoire Littoral Environnement et Sociétés, UMRi CNRS 7266, Université de La Rochelle, 17042 La Rochelle, France - ^d Sorbonne Universités, UPMC Univ Paris 06, CNRS USR3151, "Protein Phosphorylation and Human Disease" Unit, Plateforme de criblage KISSf, Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff, France - ^e Centre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1-CNRS, Bâtiment 10B, Campus de Beaulieu, 35042 Rennes, France #### ARTICLE INFO Article history: Received 21 June 2016 Received in revised form 16 August 2016 Accepted 19 August 2016 Available online 24 August 2016 Keywords: Pyridine Azole N-Arylation Copper Antiproliferative activity #### ABSTRACT N-Arylation of pyrrole with 3-iodo-4-methoxypyridine was investigated by copper catalysis under different conditions. The best conditions, that proved to be protocol A (CuI, DMEDA or TMEDA, K_3PO_4 , DMF at 110 °C) and above all protocol B (Cu₂O, Cs₂CO₃, DMSO at 110 °C), were applied to the synthesis of various N-(methoxypyridyl) pyrroles, indoles and benzimidazoles. The behavior of the different iodinated methoxypyridines was rationalized by evaluating the partial positive charge on the carbon bearing iodine from the ¹H NMR chemical shift of the corresponding deiodinated substrates. The reaction was next connected with the deprotometalation-iodolysis step generating iodinated methoxypyridines: straight involvement of the crude iodo intermediates in pyrrole N-arylation afforded the expected N-(methoxypyridyl) pyrroles in good yields. Several synthesized N-(methoxypyridyl) azoles exerted low to moderate antiproliferative activity in A2058 melanoma cells. © 2016 Elsevier Ltd. All rights reserved. #### 1. Introduction Aromatic heterocycles are present in numerous molecules of chemical or biological interest, as well as in organic materials for different applications. In particular, *N*-(pyridyl) azoles are key skeletons present in pharmaceuticals¹ and in functional materials.^{1g,2} The development of simple methods to build such scaffolds is thus of interest. Among them, deprotonative³ and dehalogenative⁴ metalations, using respectively polar organometallic bases and transition metal catalysts, are powerful tools. Recently, metallic pairs with which deprotolithiation is followed by 'trans-metal trapping' allowed sensitive substrates to be functionalized.⁶ Within this context, we have developed the putative pair 1:1 $Zn(TMP)_2$ -LiTMP·2LiCl \pm TMEDA⁷ (TMP=2,2,6,6-tetramethylpiperidino; TMEDA=N,N,N',N'-tetramethylethylenediamine), generated from $ZnCl_2$ -TMEDA and LiTMP in a 1:3 ratio, ⁸ for the room temperature functionalization of numerous substrates including pyridines.⁹ In addition, copper-catalyzed N-arylation of azoles has recently met a huge development.^{4a,b,4d-f,10} We here report our efforts to combine deprotometalationiodolysis of methoxypyridines with *N*-arylation of azoles for the synthesis of pyridine-based C,N'-linked bis-heterocycles. The antiproliferative activation of the obtained scaffolds in melanoma cells has also been evaluated. #### 2. Results and discussion We recently developed a deprotometalation-iodolysis-*N*-arylation sequence from benzothiophene, benzofuran, benzothiazole and benzoxazole to access various bis-heterocycles.¹¹ In this ^{*} Corresponding authors. E-mail addresses: william.erb@univ-rennes1.fr (W. Erb), badri_sofi@yahoo.fr (G. Bentabed-Ababsa), valerie.thiery@univ-lr.fr (V. Thiéry), bach@sb-roscoff.fr (S. Bach). [†] Present address: Département de Chimie, Faculté des sciences exactes et informatique, Université Hassiba Benbouali de Chlef, Hay Es-Salem, RN 19, 02000 Chlef, Algeria. study, deprotolithiation followed by in situ *trans*-metal trapping of the five-membered aromatic heterocycles was carried out in THF (THF=tetrahydrofuran) before iodolysis by using a basic combination prepared from ZnCl₂·TMEDA and LiTMP in a 1:3 ratio, ^{8.9,12} and supposed to afford 1:1 Zn(TMP)₂–LiTMP·2LiCl±TMEDA. ^{7.8} The crude iodides were directly involved in the *N*-arylation of different azoles (1.5 equiv) in the presence of metal copper (0.2 equiv), cesium carbonate (2 equiv) and acetonitrile, at the reflux temperature of the solvent for 24 h. ¹³ In order to reach N-pyridyl azoles, we applied this procedure to the commercially available methoxypyridines 1a, 2a and 3a (Table 1). From 2-methoxypyridine (1a), the expected N-(2-methoxy-3-pyridyl) azoles were isolated in the case of pyrrole (product 1b, entry 1), pyrazole (**1c**, entry 2) and benzimidazole (**1d**, entry 3). The low yields are, at least to some extent, due to the insufficient amount of lithium-zinc base used; indeed, 2-methoxypyridine (**1a**) is much more completely deprotometalated by employing 1 equiv of ZnCl₂·TMEDA and 3 equiv of LiTMP. The *N*-arylation of benzimidazole (product **1d**) appears as less efficient, when compared with those of pyrrole and pyrazole. We previously showed that 3-methoxypyridine (**2a**) can be deprotonated upon treatment by the lithium-zinc base, in situ prepared from 0.5 equiv of ZnCl₂·TMEDA and 1.5 equiv of LiTMP, in THF at 20 °C for 2 h. The regioselectivity of the reaction is however incomplete; indeed, subsequent quenching with iodine afforded the 4-iodo derivative **2a**—**I** in 85% yield together with 10% of the 2- Table 1 Deprotometalation-iodolysis of the methoxypyridines 1a, 2a and 3a followed by *N*-arylation of azoles with the crude iodides 1a–I, 2a–I and 3a–I $$\begin{array}{c} \text{1) base prepared from} \\ \text{ZnCl}_2\text{-TMEDA (0.5 equiv)} \\ \text{and LiTMP (1.5 equiv)} \\ \text{Ar-H} \\ \hline \textbf{a} \\ \text{3) hydrolysis and work-up} \\ \text{4) azole (1.5 equiv)} \\ \text{Cs}_2\text{CO}_3 (2 \text{ equiv}) \\ \text{Cu (0.2 equiv)} \\ \text{CH}_3\text{CN, reflux, 24 h} \\ \hline \end{array} \quad \begin{array}{c} \text{Ar-N} \\ \text{Ar-$$ | Entry | Ar–H | | Product, yield (%) ^a | | |-------------|------|----|---------------------------------|--| | 1 2 | OMe | 1a | N OMe | 1b , 36 ^b 1c , 32 ^b | | 3 | | | N OMe | 1d , 12 ^b | | 4 | OMe | 2a | OMe
N N | 2b' , 42 ^c | | 5
6
7 | | | OMe
N
X=V | 2e', 39°
2d', 17°
2f', 10° | | 8
9 | OMe | За | OMe
N N | 3b' , 14 ^d
3c' , 10 ^d | | 10
11 | | | OMe
N N X=V | 3f , 9 ^d
3g ', traces ^d | After purification by column chromatography. ^b 2-Methoxypyridine (1a, due to incomplete deprotometalation) and 3-iodo-2-methoxypyridine (1a-I) were also recovered. ^c 4-lodo-3-methoxypyridine (2a–I) and some 3-methoxypyridine (2a) were also recovered, and degradation was noticed. $^{^{}m d}$ 3-lodo-4-methoxypyridine (3a–I) and some 4-methoxypyridine (3a) were also recovered. ## Download English Version: # https://daneshyari.com/en/article/5212875 Download Persian Version: https://daneshyari.com/article/5212875 <u>Daneshyari.com</u>