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a b s t r a c t

In the field of uncertainty quantification, uncertainty in the governing equations may
assume two forms: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty
can be characterised by known probability distributions whilst epistemic uncertainty
arises from a lack of knowledge of probabilistic information. While extensive research
efforts have been devoted to the numerical treatment of aleatory uncertainty, little atten-
tion has been given to the quantification of epistemic uncertainty. In this paper, we pro-
pose a numerical framework for quantification of epistemic uncertainty. The proposed
methodology does not require any probabilistic information on uncertain input parame-
ters. The method only necessitates an estimate of the range of the uncertain variables that
encapsulates the true range of the input variables with overwhelming probability. To quan-
tify the epistemic uncertainty, we solve an encapsulation problem, which is a solution to the
original governing equations defined on the estimated range of the input variables. We dis-
cuss solution strategies for solving the encapsulation problem and the sufficient conditions
under which the numerical solution can serve as a good estimator for capturing the effects
of the epistemic uncertainty. In the case where probability distributions of the epistemic
variables become known a posteriori, we can use the information to post-process the solu-
tion and evaluate solution statistics. Convergence results are also established for such
cases, along with strategies for dealing with mixed aleatory and epistemic uncertainty.
Several numerical examples are presented to demonstrate the procedure and properties
of the proposed methodology.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models are used to simulate a wide range of systems and processes in engineering, physics, biology, chem-
istry and environmental sciences. These systems are subject to a wide range of uncertainties. The effects of such uncertainty
should be traced through the system thoroughly enough to allow one to evaluate their effects on the intended use of the
model usually, but not always, related to prediction of model outputs.

There are two forms of model uncertainty: aleatory and epistemic. Aleatory uncertainty arises from the inherent variation
associated with the system under consideration and is irreducible. Epistemic uncertainty represents any lack of knowledge
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or information in any phase or activity of the modeling process [13] and is reducible through the introduction of additional
information.

The sources of aleatory uncertainty are typically represented using a probabilistic framework under which the aleatory
uncertainty can be represented by a finite number of random variables with some known distribution. The sources of ale-
atory uncertainty include both uncertainty in model coefficients (parametric uncertainty) and uncertainty in the sequence
of possible events (stochastic uncertainty). Stochastic uncertainty is entirely aleatory by nature. Parametric uncertainty can
also be completely aleatory if the complete distribution of all the model parameters are known a priori.

Frequently, strong statistical information such as probability distribution functions or high-order statistical moments is
not available. Experimental data needed to construct this information is often expensive and consequently no data, or only a
small collection of data points, may be obtainable. In these cases ‘‘expert opinion” is used in conjunction with the available
data to produce weak inferential estimates of parametric characteristics, often in the form of lower and upper bounds. Other
sources of epistemic uncertainty include limited understanding or misrepresentation of the modeled process, known com-
monly as ‘‘model form” uncertainty. Inclusion of ‘‘enough” additional information about either the model parameters or
structure can lead to a reduction in the predicted uncertainty of a model output. Consequently, we can consider epistemic
uncertainty as providing (conservative) bounds on an underlying aleatory uncertainty, where reduction and convergence to
the true aleatory uncertainty (or, in some cases, a constant value) can be obtained given sufficient additional information.

Until recently, most uncertainty analysis has focused on aleatory uncertainty. Numerous methods have been developed
that provide accurate and efficient estimates of this form of uncertainty. In particular, stochastic Galerkin (SG) [2,9,28] and
stochastic collocation (SC) [1,5,8,16,21,25,27] methods provide accurate representations of aleatory uncertainty and have the
ability to deal with steep non-linear dependence of the solution on random model data. For a detailed review on the meth-
ods, see [26].

In comparison to the quantification of aleatory uncertainty, the analysis of epistemic uncertainty has proved more chal-
lenging. Probabilistic representations of epistemic uncertainty are inappropriate, since the characterization of input episte-
mic uncertainty through well-defined probability distributions imposes a large amount of unjustified structure on the
influence of the inputs on the model predictions. This can result in stronger inferences than are justified by the available
data. Evidence theory [12], possibility theory [4] and interval analysis [11,19] have been proposed as more appropriate alter-
natives, where they are listed in descending order based on the amount of imposed input structure.

Of the aforementioned methods, evidence theory is the most closely related to probability theory. Evidence theory starts
from basic probability assignments on the inputs, propagates these descriptions through a model using standard sampling
techniques, and produces estimates of the lowest and highest probabilities of the model observables. These estimates define
cumulative belief and cumulative plausibility functions that represent the uncertainty in the output metrics, where belief
provides a measure of the amount of information that supports an event being true and plausibility measures the absence
of information that supports the event being false. The evidence theory representation of uncertainty approaches the prob-
abilistic representation as the amount of information about the input data increases [12].

Possibility theory is closely related to fuzzy set theory and, similar to evidence theory, utilizes two descriptions of like-
lihood, necessity and possibility. These two measures are based upon the properties of individual elements of the universal
set of events, unlike plausibility and belief which are derived from the properties of subsets of the universal set. For more
details, see [10].

Evidence and possibility theory require aggregation of data from multiple sources into a format consistent with the cho-
sen technique. In practice, this can be difficult and time consuming. Interval analysis [17], on the other hand, only requires
upper and lower bounds on the uncertain input data. Sampling and/or optimization [5,19] is then used to generate upper and
lower bounds (intervals) on the model outputs from predefined intervals on the input data.

The application of evidence theory, possibility theory and interval analysis to non-linear and complex problems often re-
quires a prohibitively large number of samples and typically underestimates the output extrema. Global surrogate models
have been used in an attempt to alleviate this problem [10]; however, the performance of these approaches is highly depen-
dent on the accuracy of the surrogate model and construction costs can be high when global accuracy is required and con-
vergence rates are not exponentially fast. In more recent work, surrogates with adaptive refinement strategies have been
combined with stochastic collocation methods [5,6,19,20] in order to segregate aleatory quantification with stochastic
expansions from epistemic quantification using optimization-based interval estimation.

The choice of the aforementioned methods depends on the amount of available information which can be utilized to char-
acterize the input uncertainty. Consequently this choice is highly problem dependent. Here we propose a new and more gen-
eral framework to numerically quantify epistemic uncertainty. This proposed method can deal with varying amounts of
information on the input data from simple bounds to full probabilistic descriptions, and thus can seamlessly handle the
problems with both epistemic and aleatory uncertainties. Furthermore the proposed approach utilizes the classical approx-
imation theory in multi-dimensional space and achieves high efficiency than the methods currently available.

Unlike many existing numerical methods for quantifying epistemic uncertainty, the proposed method requires only an
approximation of the ranges of the input data that encapsulates the ‘‘true” bounds of the input data. We then propose solving
an ‘‘encapsulation problem” which generates a solution to the governing equations in a domain that encloses the true (and
unknown) probability space. Here a multi-dimensional polynomial expansion can be employed to approximate the solution
on the larger encapsulation space. We show that if such a representation converges in the encapsulation space then this
method will also converge in the true probability space. Furthermore, convergence is maintained even in the presence of
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