ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Three-component reaction and organocatalysis in one: synthesis of densely substituted 4-aminochromanes

Jan Světlík ^{a,*}, Nad'a Prónayová ^b, Vladimír Frecer ^c, Dariusz Cież ^d

- ^a Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
- ^b Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
- ^c Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
- ^d Department of Organic Chemistry, Jagiellonian University, 30 060 Kraków, Poland

ARTICLE INFO

Article history:
Received 4 July 2016
Received in revised form 27 September 2016
Accepted 10 October 2016
Available online 11 October 2016

Keywords: Organocatalysis L-Proline 4-Aminochromane Salicylaldehyde

ABSTRACT

Cyclocondensation of salicylaldehydes with alkyl acetoacetates and 2-aminobenzothiazoles or 2-aminothiadiazole/thiazoles under L-proline catalysis gives 4-hetarylamino substituted chromanecarboxylate derivatives. The mechanism involving the Mannich/hemiketalization cascade reaction and the observed stereoselectivity of the three component process are discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The chromane skeleton represents a key structural unit found in a plethora of natural products like flavans and isoflavans.¹ This privileged heterocyclic entity is also an essential feature of more complex compounds including vitamin E, tocopherols and cannabinoids.² Among the numerous types of bioactive functionalized chromanes,³ the 4-amino derivatives have received unusual interest because of their ability to act as ATP-sensitive potassium channel openers.⁴ Cromakalim (1, Fig. 1) being a lead compound of K_{ATP} activators has had a pivotal influence in the development of

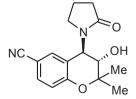


Fig. 1. Pharmacologically valuable cromakalim 1.

new promising cardioprotective agents for myocardial ischemia.⁵ Moreover, potassium channels have become attractive pharmacological targets for novel therapeutic strategies in the treatment of hypertension, asthma, urinary incontinence, epilepsy and certain neurodegenerative diseases, glaucoma and diabetes.⁵

Most of synthetic approaches to the 4-aminochromane framework involve reactions between o-hydroxybenzaldimines and electron-rich cyclic or open-chain alkenes catalyzed by several Lewis and Brønsted acids. An alternative route making use of salicylaldehyde Schiff bases consists in their Sc(OTf)3 promoted cyclization with 2,2-dimethoxypropane. Besides, an intramolecular etherification of bromo substituted β -aminoalcohols mediated by Cul/8-hydroxyquinoline constitutes an another preparative protocol. Notably, an adaption of the established imine method for chiral organocatalysts and complexes has permitted development of an enantioselective entry to this molecular architecture. 10

Recently we have found ¹¹ that the cyclocondensation of salicy-laldehydes **2** with alkyl acetoacetates **3** and 2-aminobenzothiazoles **4** or 2-amino-5-methylthiazole **5b** under classical Biginelli reaction conditions (concd HCl catalysis) gave hetarylamino substituted spiroketals **6** (Fig. 2) instead of the expected pyrimidine ^{12a,b} or oxygen-bridged pyrimidine scaffold. ^{12a,c} In one case we succeeded in identifying a minor chromane by-product (namely **7b**,

^{*} Corresponding author. E-mail address: svetlik@fpharm.uniba.sk (J. Světlík).

Fig. 2. Spirobischromane product formed under Biginelli conditions.

Scheme 1).¹¹ It was therefore of interest to study whether a modification of the above experimental procedure might affect the reaction outcome. The widely used organocatalysis by L-proline in diverse multicomponent processes ¹³ prompted us to examine this amino acid as a promoter for the previously studied transformation. In pursuing our work on the conformationally restricted heterocycles, ^{11,12} we report here a practical one-pot synthesis of highly substituted 4-aminochromanes. Generally, in this case construction of these bicyclic molecules involves the formation of three new bonds (one C–C, one C–N, and one C–O) and three consecutive stereocenters in one synthetic step.

Product	R	X	Het	Yielda [%]	dr ^b
7/7 ' a	Me	Н	S N	45	77:23
7/7 'b	<i>iso</i> Pr	Н	S N	71	82:18
7/7 'c	<i>tert</i> Bu	Н	S N	69	84:16
7/7 ' d	Bn	Н	S N	50	86:14
7/7 ' e	<i>tert</i> Bu	Н	Me S	57	85:15
7/7 'f	<i>tert</i> Bu	Н	S Me	78	84:16
7/7 ' g	<i>tert</i> Bu	Н	MeO S	42	77:23
7/7 'h	<i>tert</i> Bu	Н	S N	53	75:25
7/7 'i	<i>tert</i> Bu	Н	Me \(\sigma_N^S \)	70	80:20
7/7 'j	<i>tert</i> Bu	Н	Me \(\sigma \) \(\sigma \) \(\sigma \) \(\sigma \)	50	80:20
7/7 'k	<i>tert</i> Bu	6-Br	S N	63	82:18
7/7'1	<i>tert</i> Bu	8-OMe	S N	58	80:20

^a Isolated yield.

Scheme 1. L-Proline catalyzed three-component reaction.

^b Determined by ¹H NMR of the crude product.

Download English Version:

https://daneshyari.com/en/article/5213091

Download Persian Version:

https://daneshyari.com/article/5213091

<u>Daneshyari.com</u>