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a b s t r a c t

A fully three-dimensional semi-Lagrangian scheme is developed for computing the evolu-
tion of advected self-propagating surfaces (e.g., premixed flames) governed by a level-set
advection–propagation equation. The scheme provides third-order spatial accuracy and
shape preservation. Example numerical simulations of three-dimensional front propaga-
tion are presented to illustrate the capability of the scheme of capturing cusp formation
and associated surface-area annihilation as well as the formation and consumption of
detached closed-surface pockets behind fronts propagating in highly vortical flow.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Markstein and Squire [1] introduced the advection–propagation equation below to describe the propagation of a flame
surface through an arbitrary unsteady flow field. This equation governs the evolution of a scalar field Gðx; tÞ, describing
the motion of any one of its isoscalar surfaces which propagates normal to itself locally while being advected by the flow
field Uðx; tÞ

@G
@t
þ ðU� SNnÞ � rG ¼ 0: ð1Þ

The propagation velocity is �SNn, where nðx; tÞ � rG=jrGj is the local surface normal vector. Thus, the isoscalar surface
propagates intrinsically at the speed SN down the gradient of the scalar field. This is in analogy with the transport of heat
by molecular diffusion, which occurs down the gradient of the temperature field. The works of Markstein and Squire [1],
Markstein [2] and Williams [3] employed the advection–propagation equation in analytical studies of flame-front stability.
Kerstein et al. [4] subsequently used the formulation to investigate attributes of arbitrary-interface propagation in Navier–
Stokes turbulence. Osher and Sethian [5] developed the first stable numerical methods for the solution of Eq. (1), also known
as the level-set equation, for front propagation in quiescent flow.

In the present work, both SN and the flow-field velocity U are measured in units of the known constant planar-surface
speed SL (e.g., the laminar-flame speed); G and the spatial variables (x) are measured in units of a constant length scale l char-
acterizing order-unity variations of the advection field, and time is measured in units of l=SL. In general, SN depends locally on
properties of the flow field (e.g., the rate of flow-field strain normal to the isoscalar surface) and isoscalar surface geometry
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(e.g., the surface curvature) [1–3,5–7]. However, in the present work the case SN ¼ 1 is considered for simplicity, without a
loss of generality of the proposed numerical scheme.

Numerical schemes developed for the accurate solution of Eq. (1) should be shape preserving in the sense that no new
local maxima or minima of the scalar field should be created. In other words, although the volume of space between two
given isoscalar surfaces will in general vary in time, the range of G over this volume should remain constant. This shape-pres-
ervation property is a consequence of the simple fact that the value of G must by definition remain constant along the path of
motion of its level set, as determined by its local velocity v � U� SNn according to Eq. (1). Since v is not generally solenoidal
even when the advection flow-field U is incompressible (due to the presence of the surface-propagation term), except pos-
sibly for the simplest case of planar-surface propagation, G is not generally conserved. A conserved scalar /CS, the integral of
which (over the volume of space between two given isoscalar surfaces) remains constant, is governed by the following con-
servation law

@/CS

@t
þr � ð/CSvÞ ¼ 0: ð2Þ

It can be shown by use of the Reynolds-transport and divergence theorems that any non-propagating scalar field exclusively
advected by a solenoidal velocity field is conserved. If the advection flow is compressible, on the other hand, it can be shown
in a similar manner that the product of any non-propagating scalar field w with the density of the flow q is conserved (again
assuming no diffusion, production or consumption of the scalar field). In this case, one has /CS ¼ qw and

@ðqwÞ
@t

þr � ðqwUÞ ¼ 0;
@w
@t
þ U � rw ¼ 0; ð3Þ

the second, advection form of the two relations resulting from mass continuity. An accurate numerical scheme designed to
predict the evolution of w should be therefore both conservative with regard to qw and shape-preserving with regard to w.
Note that the continuity equation, obtained from the first relation in Eq. (3) by setting w ¼ 1, is not in general shape preserv-
ing (except for the trivial case of incompressible flow) because the source term �qr � U can cause new maxima or minima in
q to develop in the flow [8]. Schemes based on Eulerian, control-volume analyses are inherently conservative and have tra-
ditionally been popular for solving conservation laws such as Eq. (2) and the first relation of Eq. (3) [8–15]. Semi-Lagrangian
schemes which are not inherently conservative but may offer greater computational efficiency over traditional Eulerian
methods through the use of larger time steps [16,17] have been attractive for solving advection laws such as the second rela-
tion of Eq. (3). Recently, multidimensional schemes which are both conservative and shape-preserving and allow unre-
stricted time steps have been developed using both Eulerian [13,18,19] and semi-Lagrangian [20,21] formulations. Strain
[22] provides an excellent introduction of semi-Lagrangian methods for moving interfaces using time steps unconstrained
by numerical-stability issues, including many two-dimensional examples. Ultimately, however, the time step may be limited
in many practical simulations by the effect of existing temporal gradients of SN and U on the accuracy of isoscalar-surface-
element trajectory approximations.

In the present work, we employ a nonconservative shape-preserving semi-Lagrangian scheme for the solution of Eq. (1),
consistent with the nonconservative nature of the advection–propagation equation. The scheme is based on a multidimen-
sional formulation which allows for CFL numbers as large as 1. In the following section the formulation of the numerical
scheme is presented, followed by examples, discussion and a conclusion in subsequent sections.

2. Formulation

The semi-Lagrangian formulation employed herein for solution of Eq. (1) is derived using upwind transient interpolation
modeling (TIM), as described by Leonard et al. [10,14]. Accordingly, the scalar field G at each grid point xijk � ðxi; yj; zkÞ is up-
dated at each new time step using the following Lagrangian transport law

Gðxijk; tn þ DtÞ ¼ G xL
ijkðtnÞ; tn

� �
;

xL
ijkðtnÞ � xijk � vaveDt;

vave ¼ 1
Dt

R tnþDt
tn

v xL
ijkðtÞ; t

� �
dt:

9>>>=
>>>;

ð4Þ

Here xL
ijkðtÞ is the location at time t of an element of the isoscalar surface on its path from its original location xL

ijkðtnÞ at tn to
its final location xijk at tn þ Dt. In this sense the path defined by xL

ijkðtÞ for tn 6 t 6 tn þ Dt is peculiar to xijk, being associated
with a different surface element at each time step. Since the set of surface elements tracked are not fixed but are redefined at
each time step, the transport scheme is characterized as semi-Lagrangian. The value of xL

ijkðtnÞ is specified implicitly by the
last two relations of Eq. (4) and is obtained most accurately by iteration if large time steps associated with motion of surface
elements over multiple grid cells are to be considered. In the present formulation, we will derive an explicit relation for
xL

ijkðtnÞ but prevent surface elements from completely traversing more than one grid cell during a given time step to preserve
accuracy. Consequently, the local CFL number based on the magnitude of the surface-element velocity v � U� SNn and the
grid spacing Dx will be limited to a value of no greater than 1.
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