ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Conformational studies of glycosylated cyclic oligomers of furanoid sugar amino acids

Nishant Singh ^a, Pancham Singh Kandiyal ^b, Praveen Kumar Shukla ^c, Ravi Sankar Ampapathi ^{b,*}, Tushar Kanti Chakraborty ^{a,d,*}

- ^a Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- ^b Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- ^c Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- ^d Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India

ARTICLE INFO

Article history: Received 15 June 2016 Received in revised form 28 July 2016 Accepted 29 July 2016 Available online 30 July 2016

Keywords: Sugar amino acid NMR Conformation Glycosylation Cyclic peptide

ABSTRACT

Glycosylation of molecules improve their pharmacological and pharmacokinetic properties. In the current manuscript, we have explored the effect of glycosylation on the structure and function of conformationally well-defined small ring homooligomers derived from a structurally diverse library of sugar amino acids (SAA). Conformational analyses carried out by NMR suggested that these cyclic dimers and trimers have well-defined structures in solution. MD simulations performed based on the restraints obtained from NMR revealed that C2H and CO are positioned outside the plane of the ring and NHs are pointed inside the ring. It was encouraging to note that while the cyclic non-glycosylated homooligomers did not show any antimicrobial activity at all, their glycosylated counterparts showed relatively better activity. The modular design developed here is amenable to further improvement and can serve as a tool to investigate many molecular recognition processes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Glycosylated natural products are abundant displaying wide ranging antimicrobial, antifungal and/or anticancer activities.¹ Many bacteria also use glycosylated small molecules as chemical weapons to gain a selective advantage or as signalling molecules for intra- and interspecies¹ communication.² Sugar moieties in these natural products and metabolites dramatically improve their pharmacological and pharmacokinetic properties, such as solubility, cellular permeability, distribution and metabolic stability.³ They also impact the delivery of the natural product to the target, present high affinity and specificity for a given target, tissue, cell, as well as modulate both mechanism and in vivo properties.⁴ Given that carbohydrates occupy a very large chemical space, differential glycosylation of natural products and/or synthetic small molecules offers a viable strategy to produce new chemical entities with improved pharmacological properties and biological activities.⁵ This encouraged us to explore the effect of glycosylation on the structure and function of conformationally well-defined small ring homooligomers derived from a structurally diverse library of sugar amino acids (SAA). To begin with, the choice of the carbohydrate to be attached to these cyclic peptides stemmed from many naturally occurring C_2 -symmetric cyclic diolides isolated from marine cyanobacteria, like clavosolides, cyanolides, cocosolide, etc. (Fig. 1), all of which carry methylated xylopyranosides. In this paper, we describe the synthesis, conformational studies and biological activities of cyclic homooligomers 1-4 of furanoid sugar amino acids, glycosylated with tri-0-methyl-0-xylopyranosyl sugar.

2. Results and discussion

The synthesis of the cyclic glycopeptides **1**—**4** was carried out in a similar fashion as reported by us and others ¹⁰ using solution phase peptide synthesis in which, the glycosylated sugar amino acid (SAA) monomers **5**—**8** (Fig. 2) were converted to their cyclic homooligomer counterparts efficiently. The construction of the monomers **5**—**8** (**5** for **1**, **6** for **2**, **7** for **3** and **8** for **4**) was initiated using 2-deoxy-D-ribose (for glycosyl acceptor residues **12** and **13**) and D-xylose (for glycosyl donor residue **14**) as the starting raw materials (Scheme 1). The monomers **5**—**6** differ from monomers **7**—**8** in the configuration of the stereocenter at C2 of the furanoid rings of their constituent δ -SAA moieties (Scheme 1). But the monomers **5** (or **7**) and **6** (or **8**) departed from each other with respect to the type of *O*-glycosidic linkage present in them, i.e.,

^{*} Corresponding authors. E-mail addresses: ravi_sa@cdri.res.in (R.S. Ampapathi), tushar@orgchem.iisc.ernet.in (T.K. Chakraborty).

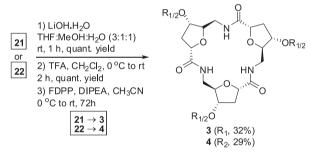

Fig. 1. Structures of glycosylated cyclic peptides of sugar amino acids, 1-4 and C_2 -symmetric diolide natural products.

Fig. 2. Glycosylated δ -SAA monomers **5**–**8**.

Scheme 1. Synthesis of O-glycosylated and protected precursors 19-22.

monomer **5** (or **7**) possesses α -O-glycosidic linkage while monomer **6** (or **8**) carry β -O-glycosidic linkage. While monomers **5** and **6** were used to get solely the C_2 -symmetric glycosylated homooligomers **1** and **2**, respectively, monomers **7** and **8** furnished C_3 -symmetric glycosylated homooligomers **3** and **4**, respectively as the major products (Schemes **2** and **3**).

Scheme 2. Synthesis of the C_2 -symmetric glycosylated cyclodimers 1 and 2.

Scheme 3. Synthesis of the C_3 -symmetric glycosylated cyclotrimers **3** and **4**.

The synthesis of the protected SAA precursors (19–22), each representing the monomers 5–8 sequentially, was carried out by Oglycosylation of 12-13 using the glycosyl donor 14 (Scheme 1). The preparation of 12-13 commenced from commercially available 2deoxy-D-ribose (9) which was easily and efficiently converted into diastereomeric intermediates 10 and 11 as reported earlier from our lab (Scheme 1).¹¹ BCl₃-mediated benzyl ether deprotection¹² of intermediates 10 (C2-R-isomer) and 11 (C2-S-isomer) furnished 12 and 13, respectively, in excellent yields. Thereafter, BF₃·Et₂O mediated O-glycosylation reaction¹³ was implemented between substrates 12-13 and the glycosyl donor substrate, permethylated-Dxylose ¹⁴ **14**, resulting in the formation of α -O-glycosylated product **15** along with β-O-glycosylated product **16** (from **12**, overall 89% yield) and α -O-glycosylated product **17** along with β -O-glycosylated product 18 (from 13, overall 84% yield), respectively in a ratio of 1.5:1 (α : β) after chromatographic separation. The azido moiety in the intermediates 15-18 were subjected to in situ one-pot reduction and Boc-protection reactions using Pd-C/H2 and (Boc)2O-NEt₃, furnishing compounds **19–22** in good yields (Scheme 1).

After acquiring the monomeric building blocks **19–22**, we proceeded for the synthesis of glycosylated cyclic homooligomers **1–4**. Firstly, syntheses of C_2 -symmetric cyclic peptides **1** and **2** were accomplished from the monomers **19** and **20**, respectively

Download English Version:

https://daneshyari.com/en/article/5213133

Download Persian Version:

https://daneshyari.com/article/5213133

<u>Daneshyari.com</u>