Tetrahedron 72 (2016) 8230-8240

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of new pyrrolo-, and pyrido-anellated quinazolinones as potential antiproliferative agents

Tetrahedro

Davide Carta ^a, Lisa Dalla Via ^{a, *}, Aída Nelly García-Argáez ^{a, b}, Maria Grazia Ferlin ^a

^a Department of Pharmaceutical and Pharmacological Science, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
^b Fondazione per la Biologia e la Medicina della Rigenerazione T.E.S.-Tissue Engineering and Signalling Onlus, Via F. Marzolo,13, 35131 Padova, Italy

ARTICLE INFO

Article history: Received 22 July 2016 Received in revised form 4 October 2016 Accepted 20 October 2016 Available online 24 October 2016

Keywords: Pyrroloquinazolinone Pyridoquinazolinone Antiproliferative activity DNA intercalation DNA topoisomerases

ABSTRACT

Some pyrrolo[3,2-*f*]quinazolinones (compounds **4**–**12**), two pyrido[3,2-*f*]- and two pyrido[2,3-*g*]quinazolinones (compounds **15**, **16** and **22**, **23**, respectively) were prepared via multistep syntheses. The tricyclic pyrroloquinazolinone nucleus was built starting from 5-aminoindole via a modified reported pathway to form the pyrimidine ring. To synthesize the tricyclic pyridoquinazolinones, new pathways were designed: the angular moiety was obtained starting from 6-aminoquinazolinone to form the pyrimidine ring. An interesting antiproliferative activity was found for compound **23**, which was able to form a molecular intercalative complex with DNA and to interfere with the relaxation activity of both topoisomerase I and II. The activation of the apoptotic pathway was also demonstrated.

© 2016 Elsevier Ltd. All rights reserved.

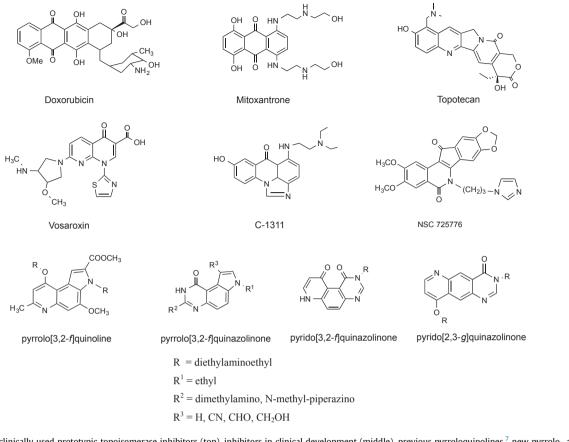
1. Introduction

The quinazoline skeleton is found in a number of biologically active molecules and in particular, 4(3H)-quinazolinone derivatives display a wide range of biological properties, well documented in the literature.¹ Quinazolinone derivatives have also been developed as antiproliferative agents acting as inhibitors of thymidylate synthase² or of tubulin polymerization.³ Heterocycle-fused quinazolinones are less described and pyrimidoquinazolinones, due to their polycyclic planar structure bearing more or less complex side groups, were proposed as intercalators and topoisomerase II inhibitors.^{4,5}

Although many papers describe various polyheterocycle alkylamino-substituted derivatives acting as intercalators and topoisomerase II inhibitors, those focusing on the synthesis and biological profiles of pyrrolo- and pyridoquinazolinones are very few.⁶

Considering the richness of the chemical, physicochemical and pharmacological properties of quinazoline derivatives, the preparation of new fused quinazoline structures remains a worthy area of research.

* Corresponding author. E-mail address: lisa.dallavia@unipd.it (L. Dalla Via). In the past few years we have focused our interest on the synthesis and biological evaluation of some pyrroloquinolines and pyridocarbazoles as analogues of ellipticine, a well-known intercalating anti-topoisomerase II agent.^{7,8} The ability of ellipticine to intercalate into DNA and to alter topoisomerase II activity appears to play an important role in its antineoplastic activity.^{9,10}


Recently, we have moved to the synthesis and characterization of some new poly-heterocycles containing the quinazolinone scaffold fused to a pyrrolo or pyridine ring to build both angular and linear tricycles. Fig. 1 shows the structures of clinically used prototypic topoisomerase inhibitors (top), inhibitors in clinical development (middle), our previous pyrroloquinoline derivatives,⁷ and the new structures proposed in this paper (bottom). The structural similarity among all these compounds is evident: the presence of a planar platform linking side polar groups, two crucial elements for topoisomerase inhibition.^{11–14}

2. Results and discussion

2.1. Chemistry

The synthesis of pyrrolo[3,2-*f*]quinazolinone derivatives **4**–**8** described in Scheme 1 was accomplished adopting a methodology previously reported to form the pyrimidine ring starting from an aromatic amine.¹⁵ Thus, 5-aminoindoles **1**–**3** obtained by us as

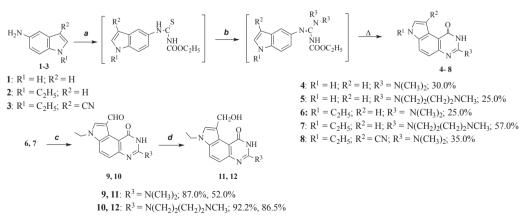


Fig. 1. Structures of clinically used prototypic topoisomerase inhibitors (top), inhibitors in clinical development (middle), previous pyrroloquinolines,⁷ new pyrrolo- and pyridoquinazolinone structures proposed in this paper (bottom).

previously reported¹⁶ were submitted to a one pot reaction by successive addition of the reagents: ethoxycarbonylisothiocyanate, diethylamine or methylpiperazine, and HgCl₂ to the reaction mixture with the indicated stoichiometry. Finally, when the reaction mixture was subjected to thermal cyclization, the 2-alkyl amino-substituted pyrrolo[3,2-*f*]quinazolinones **4**–**8** were formed by means of a regio-selective reaction.¹⁷ Indeed, it is worthy to note that the products obtained possess exclusively angular structures,

and any product with linear geometry was not observed by proton NMR spectroscopy. The ¹H NMR spectra of compounds **4–8** showed two doublets at about δ 7.64 and 7.92 for an *ortho* coupling (J = 8.7 Hz) assigned to H-5 and H-6, respectively, and not two singlets as would be expected for a linear structure. In Scheme 1, the other four pyrroloquinazolinone derivatives described are obtained by modifying compounds **6** and **7** at position 8. Firstly, aldehydic compounds **9** and **10** were prepared by reacting **6** and **7**

Reagents and conditions:

a) DMF, SCNCO $_2C_2H_5$, r.t., 1 h; b) dimethylamine or methylpiperazine, HgCl₂, r.t.,

12 h, refluxing 2 h; c) POCl₃, DMF, 30-40°C, 4 h; d) methanol, NaBH₄, r.t., 3-4 h.

Scheme 1. Synthesis of pyrrolo[3,2-f]quinazolinone derivatives 4-12.

Download English Version:

https://daneshyari.com/en/article/5213183

Download Persian Version:

https://daneshyari.com/article/5213183

Daneshyari.com