Contents lists available at ScienceDirect

Tetrahedron

Tetrahedron report 1119

Imidodiphosphoric acid catalysis

Steven M. Langdon

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada

ARTICLE INFO

Article history: Received 1 May 2016 Available online 18 June 2016

Asymmetric catalysis Confined Brønsted acids Homogeneous catalysis Organocatalysis Synthetic methods

Contents

1.	Takan du artina	5248
1.	Introduction	
	1.1. Imidodiphosphoric acids	
_	1.2. Focus of this report	
2.		
	2.1. N,O-Acetalizations	
	2.2. O,O-Acetalizations	
	2.2.1. Resolution of diols	
	2.3. Spiroketalizations	
3.	Sulfoxidation reactions	
4.	Functionalization of indoles/pyrroles	
	4.1. Reactions of indoles/pyrroles with imines	5250
	4.1.1. Preformed imines	
	4.1.2. Imines from enamides	5250
	4.1.3. Pictet-Spengler reactions	5251
	4.2. Friedel—Crafts reactions of indoles/pyrroles with diarylmethanols	5251
5.	Miscellaneous reactions	
	5.1. Polymerizations	5251
	5.2. Three-component reactions	5251
	5.2.1. Mannich reactions	5251
	5.2.2. Biginelli reactions	5252
	5.2.3. Synthesis of 1,4-dihydropyridines	5252
	5.3. Prins cyclization reactions	5252
	5.4. Carbonyl-ene cyclization reactions	
	5.5. Desymmetrization of bicyclic bislactones	
6.	Outlook	
	Acknowledgements	
	References and notes	
	Biographical sketch	
	Dographical Sector	

1. Introduction

The past decade has seen substantial growth in chiral phosphoric acid catalysis, particularly with 1,1'-binaphthalene-2,2'-diol (BINOL) and related axially-chiral ligands. With a wide range of derivatives and broad applicability, these catalysts have demonstrated versatility and tunability. For instance, simple conversion of the phosphoric acid to an *N*-sulfonyl phosphoramide results in an eight million-fold increase in acidity. In addition to singly axially chiral phosphoric acids, a subgroup of catalysts possessing multiple chiral axes has been reported. These species are suggested to improve selectivity through cooperative interactions between their acid and/or stereogenic backbones. The combination of these concepts resulted in the formation of imidodiphosphoric acids (IDPAs) (Fig. 1).

Fig. 1. Synergy of concepts leading to BINOL-derived imidodiphosphoric acid catalysts. **a**, phosphoric acid. **b**, N-sulfonyl phosphoramide. **c**, diphosphoric acid with two axes of chirality. **d**, imidodiphosphoric acid.

1.1. Imidodiphosphoric acids

IDPAs are prepared from the same BINOL-derivatives as their parent phosphoric acids, requiring only two additional steps in their synthesis (Scheme 1).⁴

Scheme 1. Typical syntheses of BINOL-derived chiral phosphoric and imidodiphosphoric acids.

Imidodiphosphoric Acids

Steric interactions from the 3,3′-substituents preclude rotation about the P–N bond(s), reducing the number of both conformers and catalytically active sites to one. With the addition of a deep chiral cavity around the active site, these factors severely limit the possible orientations of coordinated substrates leading to high degrees of stereoinduction (Fig. 2).^{4a}

Fig. 2. Conformational and steric effects of 3,3'-substituents.

1.2. Focus of this report

This report outlines the applications of imidodiphosphoric acid in organocatalysis. Emphasis is on proposed rationales for the observed reactivities/selectivities. Where appropriate, the imidodiphosphoric acid catalysed reaction is contrasted with select competing or complementary catalytic methodologies. Sections are divided according to reaction types: acetalizations, sulfoxidations, functionalization of indoles/pyrroles, and miscellanea. Several existing reviews directly address specific reactions and are suggested for further reading in their relevant sections. Fig. 3 summarizes the imidodiphosphoric acids highlighted in this review.

Fig. 3. Imidodiphosphoric acids highlighted in this report.

2. Acetalization reactions

2.1. N,O-Acetalizations

Although not the primary focus of the work, the initial use of imidodiphosphoric acids as catalysts was reported by List et al. in 2010 (Scheme 2).⁵

Download English Version:

https://daneshyari.com/en/article/5213269

Download Persian Version:

https://daneshyari.com/article/5213269

<u>Daneshyari.com</u>