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a b s t r a c t

The boundary conditions used to represent macroscopic-gradient-related effects in
arbitrary geometries with the lattice Boltzmann methods need a trade-off between the
complexity of the scheme, due to the loss of localness and the difficulties for directly apply-
ing link-based approaches, and the accuracy obtained. A generalization of the momentum
transfer boundary condition is presented, in which the arbitrary location of the boundary is
addressed with link-wise interpolation (used for Dirichlet conditions) and the macroscopic
gradient is taken into account with a finite-difference scheme. This leads to a stable
approach for arbitrary geometries that can be used to impose Neumann and Robin bound-
ary conditions. The proposal is validated for stress boundary conditions at walls. Two-
dimensional steady and unsteady configurations are used as test case: partial-slip flow
between two infinite plates and the slip flow past a circular cylinder.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Lattice Boltzmann (LB) methods [1–4] are an efficient approach to simulate fluid flow based on the solution of the Boltz-
mann equation with a minimal discretization of the velocity space [5]. One of its strengths is the ability to simulate complex
geometries with little additional computational effort. Simulations with detailed geometries of porous media [6], blood ves-
sels [7], indoor environments [8] or flow aerodynamics [9] are some successful examples. Different implementations of
Dirichlet conditions for arbitrary geometries have been developed; however, little research has been published related to
the implementation of Neumann boundary conditions. This deficit is probably due to several factors, which can be illustrated
using the stress boundary-condition as an example. First, the stresses are macroscopic moments related to the non-equilib-
rium part of the distribution functions that have an Oð@juiÞ influence on the accuracy of the boundary condition, which is
sometimes neglected; additionally, many configurations do not require these kind of boundary conditions, and in the most
common case where it is needed (i.e. zero tangential stresses for symmetry planes) the link-based approach can be applied
through a specular reflection; furthermore, it is a hydrodynamic boundary condition, and kinetic ones are often preferred
(especially for microflows). The use of Neumann conditions would allow to extend the applicability of the lattice Boltzmann
method by prescribing, for example, effects related to @jui (e.g. stress over a porous wall, wall models for turbulent flows,
hydrophobic-hydrophilic wall treatments) and to reduce the complexity of the domain (e.g. symmetry axis).

In the following, the evolution of the implementation of boundary conditions in lattice Boltzmann methods is reviewed to
serve as a basis for the evaluation of the best way to implement Neumann conditions. In this discussion, only macroscopic
boundary conditions for the momentum equations are considered. However, the conclusions presented can be extended to
any other macroscopic variable.
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The first approach to model walls in LB is the use of the bounce-back scheme (see, for example, [10]) for the non-slip con-
dition, and the application of a specular reflection for the complete slip or zero-stress one. From this straightforward approach
it is possible to observe the obvious relationship between the stress at the wall, the wall collision, and the slip condition.

With the bounce-back scheme as the starting point, two pieces of work elaborated on improved boundary conditions for
LB. One of them established the influence of the relaxation parameters on the wall location [11] and the other studied the
influence of the definition of the non-equilibrium part of the distribution functions on wall (and initial) conditions [12]. Also
relevant to the present discussion are some further papers describing alternative approaches to improve the accuracy of the
bounce-back boundary condition considering different lattices (e.g. [13–16]).

A first work on including arbitrary geometries was the one by Ginzbourg and d’Humières [17] for a Poiseuille flow in in-
clined channels. Filippova and Hänel [18] developed an approach for dealing with complex geometries based on modifica-
tions to the bounce-back procedure using interpolation; this approach was improved by Mei et al. [19] and [20], and
generalized by Ginzburg et al. [21,22]. Another approach to simulate curved geometries is based on the volumetric scheme
by Chen et al. [23], that has also been improved upon [24]. The work by Verberg and Ladd [25] can be considered a different
way to impose volumetric boundary conditions. One further approach is the extrapolation proposed by Chen et al. [26] and
extended to curved geometries by Guo et al. [27]. Two additional concepts have been introduced, related to local boundary
conditions [17,28,29], and immersed boundary conditions for lattice Boltzmann methods [30].

The development of Neumann boundary treatments in LB largely focuses on the definition of slip boundaries, or stress-
related conditions, as they are linked to the development of wall boundary-conditions for microflows [31–33]. Although the
use of kinetic boundary conditions to impose a pre-defined stresses has been attempted for planar walls, no satisfactory re-
sult has been obtained in curved geometries, for which their application becomes complex or impossible [32,34].

Some attempts to simulate configurations which need Neumann conditions can be found in the literature [35,34]. The
best-suited hydrodynamic approach for setting Neumann conditions at boundaries, even with complex geometries, is often
claimed to be the volumetric approach by Chen et al. [23].

The preceding review of boundary conditions for lattice Boltzmann methods provide some guidelines for an efficient
implementation of Neumann boundary conditions. Thus, any method proposed should: (i) preserve the simplicity and good
stability behavior of bounce-back-based schemes; (ii) be second-order (or higher) for arbitrary geometries; (iii) avoid the use
of extrapolations related to hydrodynamic treatments [26]; and (iv) avoid the use of non-lattice distribution functions as in
kinetic methods with non-zero off-diagonal kernels [31,36].

The approach presented here treats the problem in a general efficient way preserving well-established boundary treat-
ments [22] and including macroscopic-gradients with a low degree of added complexity. It is a practical approximation to
solve the problem that can be formulated in a modular way to introduce improvements that do not change the basic structure.

The paper is organized as follows. Section 2 briefly describes the multi-relaxation-times (MRT) lattice Boltzmann method
used to test the boundary treatment proposed. In Section 3 the implementation of gradient-based boundary conditions is
introduced. In Section 4 results for different test cases are presented. Finally, (Section 5), some conclusions from the results
and an outline of possible applications are discussed.

2. The lattice Boltzmann method

The approach to boundary treatment presented in this paper is independent of the lattice Boltzmann method used. How-
ever, we choose an MRT lattice Boltzmann method [37] because the access to a larger number of relaxation factors allows to
improve the stability of the method, and to influence the accuracy of the boundary conditions.

A two dimensional (D2Q9) method with nine velocities ei ¼ ðexa; eyaÞ with exa ¼ ð0;1;0;�1;0;1;�1;�1;1Þ and
eya ¼ ð0;0;1;0;�1;1;1;�1;�1Þ, is used. The velocity distribution functions f � fa 2 R9 evolve according to nine velocities
in a two dimensional lattice of nodes xi 2 Z2. The evolution equation for f is:

fðxi þ eidt; t þ dtÞ � fðxi; tÞ ¼ �M�1 � S � ½mðxi; tÞ �meqðxi; tÞ� þ Fðxi; tÞ; ð1Þ

where the lower-case-bold symbols, f and m, denote transpose 9-dimensional vectors; M is the transformation matrix that
linearly relates velocity distribution functions and moments: f ¼M�1 �m and m ¼M � f; m ¼ ðq; e; �;qux; qx;quy; qy; pxx; pxyÞ

T

are the macroscopic moments and meq their equilibrium values; S ¼ diagð0; se; s�;0; sa;0; sa; sm; smÞ is a diagonal matrix of
relaxation factors, where sm is related to the viscosity; cs is the speed of sound, and wa ¼ ð4=9;1=9;1=9;1=9;1=9;1=36;
1=36;1=36;1=36Þ are the weighting coefficients for each velocity. F � Fa ¼ 1=c2

s waq0dtðeiaaiÞ is an external body force, ai

being the acceleration induced by this force. Additional details about the definition of body forces and their influence on
momentum are discussed, for example, in [38]. Further information about the method can be found in the work by Lalle-
mand and Luo [39]. Essentially, we work with a simplified version of the MRT collision operator with only two relaxation
times (TRT) [40–43,22,44]. For this case se ¼ s� ¼ sm and sa is related to sm in order to reduce errors at the boundary in a
way which varies depending on the interpolation scheme used. Unless otherwise indicated, we will take sa ¼ 8ð2� smÞ=
ð8� smÞ [21,22].

Applying a Chapman-Enskog expansion to Eq. (1) the Navier–Stokes equations are recovered in the limit of low Kn and
low Ma numbers, with q ¼

P
afa and qui ¼

P
aðeiafaÞ þ Fi=2. The fluid viscosity is related to sm as: m ¼ c2

s ð1=sm � 1=2Þ. A speed
of sound cs ¼ 1=

ffiffiffi
3
p

is considered hereafter.
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