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a b s t r a c t

A comparison study of the asymptotic behavior between different compression techniques
is reported. We show that by applying the Kronecker product approximation, the storage of
a three-dimensional demagnetizing tensor with N6 entries can be reduced to OðN2Þ, show-
ing a superlinear compression behavior. When magnetization and magnetostatic field vec-
tors are stored in compressed forms, a superlinear speedup of a field evaluation is gained.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The increasing industrial demand for large scale simulations leads to huge scale matrix equations, which require a
high computational power. Various methods have been developed for data compression to treat such large matrices.
Such techniques include Fast Multipole Method (FMM), H-matrices etc. [1,2]. Recently it has been shown that matrices,
arising from the discretization of integral equations with fast decaying kernels, possess a good Kronecker product
approximation [3–5]. Those matrices normally have a very small rank (R� N), which makes application of low-rank
approximations feasible. More details on the Kronecker product approximation are given in Section 3. The advantage
of this type of approximation compared to other techniques is its superlinear compression property. If in large scale
three-dimensional simulations one space dimension is discretized by N cells, then a total number of cells is N3. Direct
integration algorithms will scale with a total number of cells squared giving N6 for the full N3 � N3 matrix. The Kroneck-
er approximation allows us to store only OðN2Þ entries, which is less than the order of the original matrix. In the fol-
lowing we apply this type of approximation to the point-function demagnetizing tensor discretized on a tensor
product grid, with N 1 nm cubic cells in each dimension. Using the demagnetizing tensor in the compressed form,
the magnetostatic energy is calculated for problem sizes ranging from 103 cells to 8� 106 cells. Corresponding problem
sizes range from 13 Mb to approximately 500 Tb of RAM, for double precision numbers. Results of memory consumption
are then compared with other common compression techniques. Magnetostatic energy and magnetization vectors are
compressed using Kronecker format and evaluation times are also plotted versus problem sizes. All computations were
performed using a 2 GHz processor with 3Mb L2 cache.
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2. Discretization

The brief introduction of the problem being solved is given in this section. In following calculations the magnetostatic
scalar potential formalism is used for the field evaluation inside the ferromagnetic body. The magnetic scalar potential at
the position given by r and induced by the magnetization distributed over the domain X0 is given by the following volume
integral [6]:

/ðrÞ ¼
Z

X0
Mðr0Þ � r0 1

jr� r0j

� �
d3r0 ð1Þ

The magnetostatic field at location r is then given by

HðrÞ ¼ �r/ ¼ � 1
4p
r
Z

X0
Mðr0Þ � r0 1

jr� r0j

� �
d3r0 ð2Þ

This integral can be quite difficult to solve analytically for the arbitrary shaped ferromagnetic body with a nonuniform mag-
netization distribution. The value of the field is found numerically using discretization. The computational domain X0 is di-
vided into computational cells. The integration over the domain with nonuniform magnetization is split into integrals over
elements where magnetization is assumed to be constant. It is known that for a uniformly magnetized ferromagnetic body
the demagnetizing field can be computed using the demagnetizing tensor [7]. In this case the new discretized equation is
given by:

HðriÞ ¼
XN3

j¼1

NðriÞjMj; ð3Þ

where N3 is the total number of cells and

NðriÞj ¼ �
1

4p

Z
V j

rr0 1
jri � r0j

� �
d3r0 ð4Þ

is the point-function demagnetizing tensor for the jth cell. The field is evaluated at location ri, which is the centre of the ith
cell. Integrals in (4) over cubic cells can be evaluated analytically as in [8]. The tensor has nine components and it is conve-
nient to rewrite Eq. (3) in component form with ri replaced by i index:

Hp
i ¼

XN3

j¼1

Npq
ij Mq

j ð5Þ

Indices p and q in (5) run from 1 to 3 (for x, y and z, respectively) and same index implies summation over all components of
the magnetization. Eq. (5) can be written in matrix form as:

Hp ¼ NpqMq; ð6Þ

where Npq is now a N3 � N3 matrix with N6 entries and Hp and Mq are vectors containing cartesian components of field and
magnetization (both have length N3).

3. Kronecker approximation

To show how the Kronecker approximation arises we shall start from the Eq. (6) for the magnetostatic field. Let us limit to
the case where p ¼ q ¼ 1, i.e. HxðrÞ ¼ Nxxðr; r0ÞMxðr0Þ. The procedure for all other cases is the same. On a cartesian grid, the
indices i; j in (3)–(6) are replaced with ði; j; kÞ and ði0; j0; k0Þ, respectively. Then (5) can be written in tensor form:

Hx
ijk ¼

XN

i0¼1

XN

j0¼1

XN

k0¼1

Nxx
ijki0 j0k0M

x
i0 j0k0 ð7Þ

where Hx
ijk ¼ Hxðxi; yj; zkÞ is the x-component of the magnetostatic field in the centre of the ðijkÞ cell and Mx

i0 j0k0 is the constant
magnetization in the ði0j0k0Þ cell. The matrix Nxx can be viewed as a tensor:

Nxx
ijki0 j0k0 ¼

Z
Vi0 j0k0

Nxx xi; yj; zk; x0; y0; z0
� �

dx0dy0dz0 ð8Þ

If the kernel Nxx decays fast with the distance between the source and the field points, then the full tensor (8) has a small
rank and can be approximated by a data sparse tensor [4,5]. If this is the case then the kernel allows a separable approxi-
mation with a small rank R� N:

Nxxðx; y; z; x0; y0; z0Þ ¼
XR

r¼1

Prðx; x0ÞQ rðy; y0ÞRrðz; z0Þ; ð9Þ
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