ARTICLE IN PRESS

Tetrahedron xxx (2016) 1-12

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of some carbahexopyranoses using Mn/CrCl₃ mediated domino reactions and ring closing metathesis

Bejugam Santhosh Kumar, Girija Prasad Mishra, Batchu Venkateswara Rao*

Organic and Biomolecular Chemistry Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India

ARTICLE INFO

Article history: Received 14 December 2015 Received in revised form 28 January 2016 Accepted 19 February 2016 Available online xxx

Keywords: Carbasugars Aminocarbasugars Reductive elimination Nozaki—Hiyama—Kishi reaction Ring closing metathesis

ABSTRACT

An efficient and common method for the synthesis of 5a-carba- α -D-mannopyranose **5**, 5a-carba- β -D-mannopyranose **6**, (+) methyl shikimate **9**, (+) methyl-5-*epi*-shikimate **10**, validamine analogue **15** and valiolamine analogue **16** from D-mannose, formal synthesis of Tamiflu **17** from D-ribose and also synthesis of 5a-carba- α -D-glucopyaranose **1**, 5a-carba- β -D-glucopyaranose **2**, 5a-carba- β -L-altropyranose **7** and 5a-carba- α -L-altropyranose **8** from D-xylose is described using Nozaki–Hiyama–Kishi (NHK) condition and ring closing metathesis (RCM). In this transformation 5-deoxy-5-halo-manno/ribo/xylo furanoside undergoes reductive elimination in the presence of Mn/CrCl₃ to give corresponding olefin-aldehyde which was trapped by nucleophile under the same condition to afford diolefinic species which on metathesis reaction with appropriate Grubbs catalyst produced required carbocycles.

© 2016 Elsevier Ltd. All rights reserved.

Tetrahedro

1. Introduction

Carbasugars or pseudosugars are carbocyclic analogues of monosaccharides in which the ring oxygen is replaced by methylene.¹ If C-1 OH in carbasugars is replaced by amino group then they are called as aminocarbasugars. These compounds are excellent glycosidase inhibitors and shows interesting biological activity such as *anti*-cancer, *anti*-diabetic, *anti*-HIV, etc.^{1,2}

Some of the important carbasugars and their derivatives are depicted in Fig. 1. Racemic pseudo- α -p-glucopyranose **1** shows inhibition of glucose stimulated-insulin release and islet glucokinase activity.³ (\pm) Carbasugar **2** is a substrate of the cellobioside phosphorylase of *cellvibro gilvuse*,⁴ and also the taste of (\pm) carba- β -DLglucopyranose **2** is same as that of p-glucose.⁵ Carbaglucotropaeolin **3** is a 5a-carba analogue of β -D-glucopyranose and is a good inhibitor of myrosinase.⁶ Pseudo-sergliflozin **4** is a carba analogue of sergliflozin, a phase II drug and is a potent and selective inhibitor of sodium-dependent glucose cotransporter 2 (SGLT2) for the treatment of Type 2 diabetes and its $IC_{50}=2.45$ nm.⁷ Shikimic acid is a key intermediate in the synthesis of aromatic amino acids by plants, fungi and microorganisms. Shikimic acid and their derivatives such as methyl shikimate 9 and methyl-5-epishikimate **10** are biologically important compounds.⁸ Moreover several carbasugars and aminocarbasugars have been synthesised starting from shikimic acid and their intermediates.^{1a}

Some of the important aminocarbasugars are depicted in Fig. 2. These are valienamine **11**, validamine **12** and valiolamine **13**, which are secondary metabolites of various microorganisms showing glycosidase inhibitory activity. Valiolamine **13** shows activity against maltase and sucrase.⁹ Voglibose **14** is the chemical modification of valiolamine currently used for the treatment of diabetes.¹⁰ Tamiflu **17** is related to aminocarbasugar structure and is widely used for the treatment of H5N1 influenza as well as H1N1 influenza.¹¹

In continuation of our efforts towards the synthesis of carbohydrate mimics such as carbasugars,¹² aminocarbasugars¹³ and iminosugars,¹⁴ herein we report the synthesis of 5a-carba- α -Dmannopyranose **5**,¹⁵ 5a-carba- β -D-mannopyranose **6**,^{15b,c,d,h} (+) methyl shikimate **9**,¹⁶ (+) methyl-5-*epi*-shikimate **10**,¹⁶ validamine analogue **15**^{13b,17a,b} and valiolamine analogue **16**^{13b,17c,d} from Dmannose and formal synthesis of Tamiflu¹⁸ from D-ribose. Also we present here synthesis of 5a-carba- α -D-glucopyaranose **1**,^{15a,b,c,19} 5a-carba- β -D-glucopyaranose **2**,^{9c,9e,15a,19g} 5a-carba- β -L-altropyranose **7**^{19d,20} and 5a-carba- α -L-altropyranose **8**²¹ from D-xylose. The key step in the synthesis of above molecules is one pot reductive ring opening of 5-deoxy-5-iodomanno/ribo/xylo furanoside and C–C bond formation using allyl bromide under NHK²² condition to get the diene precursor for RCM reaction.²³

2. Results and discussions

http://dx.doi.org/10.1016/j.tet.2016.02.044 0040-4020/© 2016 Elsevier Ltd. All rights reserved. Reductive elimination of 5-deoxy-5-halofuranosides under Bernet-Vasella²⁴ protocol giving chiral 4-pentenals, has many

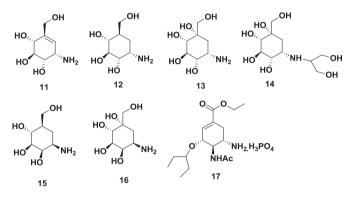
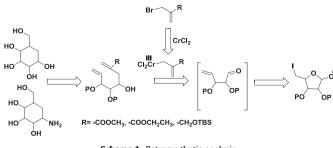
^{*} Corresponding author. E-mail address: venky@iict.res.in (B.V. Rao).

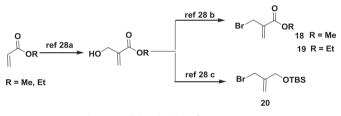
2

ARTICLE IN PRESS

B.S. Kumar et al. / Tetrahedron xxx (2016) 1-12

Fig. 1. Carbasugars and their derivatives.


Fig. 2. Some important aminocarbasugars.

synthetic applications.²⁵ The reductive elimination can be carried out with different metallic reagents such as Zn,^{24a,b} In,^{25d} CrCl₂,^{26a} Sml₂,^{26b} Mn/PbCl₂,^{26c} BuLi^{24a,b} and acetyliron.^{24g} Reductive ring opening of 5-deoxy-5-halofuranosides followed by intermolecular C-C bonding coupling in one pot have been performed by using Zn^{25c-f} and In^{25d} under ultrasonication. Our group has earlier developed CrCl₃/Zn condition for the generation of olefin-aldehyde in which Zn is used for the conversion of CrCl₃ to CrCl₂ and the aldehyde was trapped by vinyl chromium (NHK reaction) to form diene precursor for the RCM, which was carried further for the synthesis of carbafuranoses.^{12a} Later for this purpose,^{12b} we utilized Furstner's modified NHK condition for the generation of CrCl₂ from CrCl₃ using Mn as reductant which remains inert throughout the reaction.²⁷ Herein we wish to describe the synthetic utility of our domino NHK and RCM strategy for the synthesis of various carbapyranoses from 5-deoxy-5-halo manno/ribo/xylo furanosides. The retrosynthetic analysis was depicted in Scheme 1.

Scheme 1. Retrosynthetic analysis.

The 5-deoxy-5-iodo furanosides can be obtained from respective sugar such as mannose, ribose and xylose. The nucleophiles **18**, **19** and **20** required for the NHK reaction are prepared from methyl/ethyl acrylate²⁸ (Scheme 2).

Scheme 2. Allyl nucleophiles for NHK reaction.

For the synthesis of (+) methyl shikimate **9**, (+) methyl-5-epishikimate **10**, pseudo- α -D-mannopyranose **5** and pseudo- β -Dmannopyranose **6** (Scheme 3), the iodo compound 21^{29} obtained from D-mannose was treated with Mn/CrCl₃ (20:1) for 8 h in THF/ DMF. The change in colour from violet to pale blue confirmed the formation of CrCl₂. After the consumption of starting iodo compound (confirmed by TLC), catalytic amount of NiCl₂, methyl 2-(bromomethyl)acrylate 18 followed by TMSCl at 50 °C were added to carry out the NHK reaction. The reaction completed in 5 h and gave an inseparable mixture of diastereomers 22 and 23 in 1:1 ratio in 75% yield (over 2 steps). Mixture of 22 and 23 were reacted with Hoveyda-Grubbs second generation catalyst to afford compounds 24 and 25 in 96% yield which were separated using column chromatography. The compound 24 on oxidation with Dess-Martin periodinane followed by stereo selective reduction with NaBH₄ produced compound 25 exclusively. Though NHK reaction gave two diastereomeric alcohols in 1:1 ratio, the oxidation and reduction strategy provided a way for obtaining the single diastereomeric compound 25. Deprotection of 24 and 25 independently using aqueous TFA afforded (+) methyl shikimate 9 and (+) methyl-5epi-shikimate 10, respectively. The physical and spectral data of compound **9**^{16i,j} and **10**^{16h} are in accordance with the reported values. For the synthesis of pseudo- α -D-mannopyranose **5** and pseudo- β -D-mannopyranose **6**, first the ester functionalities in compounds 24 and 25 were reduced using DIBALH to furnish alcohols 26 and 29, respectively. Next the compounds 26 and 29 on stereoselective hydroboration/oxidation afforded triol compounds 27 and 30, respectively. Deprotection of acetonide functionality in

Please cite this article in press as: Kumar, B. S.; et al., Tetrahedron (2016), http://dx.doi.org/10.1016/j.tet.2016.02.044

Download English Version:

https://daneshyari.com/en/article/5213499

Download Persian Version:

https://daneshyari.com/article/5213499

Daneshyari.com