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Abstract

In this paper, a fractional partial differential equation (FPDE) describing sub-diffusion is considered. An implicit differ-
ence approximation scheme (IDAS) for solving a FPDE is presented. We propose a Fourier method for analyzing the stability
and convergence of the IDAS, derive the global accuracy of the IDAS, and discuss the solvability. Finally, numerical exam-
ples are given to compare with the exact solution for the order of convergence, and simulate the fractional dynamical systems.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Fractional diffusion equation; Sub-diffusion; Implicit difference approximation; Fourier method; Stability; Convergence

1. Introduction

Fractional diffusion equations have attracted in recent years a considerable interest both in mathematics
and in applications. These equations contain derivatives of fractional order in space, time or space–time [1].
They were used in modelling of many physical and chemical processes and in engineering [2–4]. Such evo-
lution equations imply a fractional Fick’s law for the flux that accounts for spatial and temporal non-local-
ity [5]. Fractional calculus provides a powerful instrument for the description of memory and hereditary
properties of substances [4]. Fractional-order differential equations have been the subject of worldwide
attention by many research groups. In particular, the focus of Gorenflo, Mainardi and their co-authors’
works on fractional calculus modelling (both deterministic and stochastic) and the derivation of fundamen-
tal solutions of the time, space and space–time fractional diffusion equations. They also presented discrete
random walk models [6,7] and found that the fundamental solution can be interpreted as a probability
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density evolving in time of a self-similar stochastic process that can be viewed as a generalised diffusion pro-
cess. Benson et al. [8,9] used a fractional advection–dispersion equation to simulate transport processes with
heavy tails and demonstrated the equivalence between these heavy-tailed motions and transport equations
that use fractional-order derivatives. Already in 1986, Wyss [10] considered the time fractional diffusion
equation and gave the solution in closed form in terms of Fox functions. Then in 1989, Schneider and Wyss
[11] considered the time fractional diffusion and wave equations, and the corresponding Green functions
were obtained in closed form for arbitrary space dimensions in terms of Fox functions and their properties
were exhibited. However, an explicit representation of the Green functions for the problem in a half-space
was difficult to determine, except in the special cases a = 1 (i.e., the first-order time derivative) with arbitrary
n, or n = 1 with arbitrary a (i.e., the fractional-order time derivative). Huang and Liu [12] considered the
time-fractional diffusion equations in an n-dimensional whole-space and half-space. They investigated the
explicit relationships between the problems in whole-space with the corresponding problems in half-space
by the Fourier–Laplace transform.

Fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion
(sub-diffusion) [1]. The theoretical justification for the fractional diffusion equation, together with the abun-
dance of physical and biological experiments demonstrating the prevalence of anomalous sub-diffusion, has
led to an intensive effort in recent years to find accurate and stable methods of solution that are also straight-
forward to implement [13]. It has been suggested that the probability density function (pdf) u(x, t) that
describes anomalous sub-diffusive particles follows the fractional diffusion equation [1,13,14]:

ouðx; tÞ
ot

¼ 0D1�c
t

o2uðx; tÞ
ox2

� �
þ f ðx; tÞ; t P 0; ð1Þ

where 0D1�c
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with 0 < c < 1. For c = 1 one recovers the identity operator and for c = 0 the ordinary first-order derivative.
Some numerical methods for solving the space or time, or time–space fractional partial differential equa-

tions have been proposed [15–24]. However, the stability and convergence of numerical methods for fractional
partial differential equations are deserved further investigations.

In this paper, we consider the initial-boundary value problem of the fractional diffusion equation describing
sub-diffusion (FDE-sub) [13,25]:
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uð0; tÞ ¼ uðtÞ; 0 6 t 6 T ; ð4Þ
uðL; tÞ ¼ wðtÞ; 0 6 t 6 T ; ð5Þ
uðx; 0Þ ¼ wðxÞ; 0 6 x 6 L; ð6Þ

where 0 < c 6 1; f ðx; tÞ, uðtÞ, wðtÞ and w(x) are sufficiently smooth functions.
Langlands and Henry [13] have investigated this problem. They proposed an implicit numerical scheme (L1

approximation), and discussed the accuracy and stability of this scheme. However, the global accuracy of the
implicit numerical scheme has not been derived and it is apparent that the unconditional stability for all c in
the range 0 < c 6 1 has not been established. The main purpose of this paper is to solve this problem via Fou-
rier method.

The structure of the paper is as follows. In Section 2, we present an implicit difference approximation
scheme. Sections 3 and 4 investigate the stability and convergence of the IDAS, respectively, using Fourier
method. We prove that the IDAS is unconditionally stable for all c in the range 0 < c 6 1, derive the global
accuracy of the IDAS, analyze the convergence of the IDAS , and discuss the solvability. Finally, some numer-
ical examples are provided.
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