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a b s t r a c t

The filtering skill for turbulent signals from nature is often limited by model errors created
by utilizing an imperfect model for filtering. Updating the parameters in the imperfect
model through stochastic parameter estimation is one way to increase filtering skill and
model performance. Here a suite of stringent test models for filtering with stochastic param-
eter estimation is developed based on the Stochastic Parameterization Extended Kalman
Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative
and additive biases and involve exact formulas for propagating the mean and covariance
including the parameters in the test model. A comprehensive study is presented of robust
parameter regimes for increasing filtering skill through stochastic parameter estimation
for turbulent signals as the observation time and observation noise are varied and even
when the forcing is incorrectly specified. The results here provide useful guidelines for
filtering turbulent signals in more complex systems with significant model errors.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Filtering is the process of obtaining the best statistical estimate of a natural system from partial observations of the signal
from nature. In many contemporary applications in science and engineering, real time filtering of a turbulent signal from
nature involving many degrees of freedom is needed to make accurate predictions of the future state. This is obviously a
problem with significant practical impact. Important contemporary examples involve the real time filtering and prediction
of weather and climate as well as the spread of hazardous plumes or pollutants. A major difficulty in accurate filtering of
noisy turbulent signals with many degrees of freedom is model error [1]; the fact that the signal from nature is processed
through an imperfect model where important physical processes are parameterized due to inadequate numerical resolution
or incomplete physical understanding. Under these circumstances it is natural to devise strategies for parameter estimation
to cope with model errors to improve filtering skill with model errors [2–9].

The simplest contemporary strategy to cope with model errors for filtering with an imperfect model nonlinear dynamical
system depending on parameters, k,

du
dt
¼ Fðu; kÞ ð1Þ

is to augment the state variable u, by the parameters k, and adjoin an approximate dynamical equation for the parameters
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dk
dt
¼ gðkÞ: ð2Þ

The right hand side of (2) is often chosen on an ad-hoc basis as gðkÞ � 0 or white noise forcing with a small variance [10,11].
The partial observations of the signal from nature are often processed by an Extended Kalman Filter (EKF, see [12–14]) applied
to the augmented system in (1) and (2) where the parameters k are estimated adaptively from these partial observations. Note
that even if the original model in (1) is linear, it readily can have nonlinear dependence on the parameters k so typically an EKF
involving the linear tangent approximation and Kalman filtering is needed for parameter estimation in this standard case.
Some recent applications of these and similar ideas to complex nonlinear dynamical system can be found in [2–4,6,7].

The topic of the present paper is the development of stringent test models for filtering turbulent signals from nature in
the presence of significant model error and the improvement of filtering and skill through systematic stochastic parameter
estimation. Here we develop a suite of exact Stochastic Parameterization Extended Kalman Filters (SPEKF) for stochastic
parameter estimation and filtering in these test models following recent work of two of the authors [15,16] for filtering
slow–fast systems. The test models include both additive and multiplicative bias corrections and their exactly solvable fea-
tures yield important new guidelines for stochastic parameter estimation. Results below include comprehensive understand-
ing of robust regimes for improved filtering skill with stochastic parameter estimation as well as delineating regimes of
parameters with poor skill as different aspects of the observation time, observation noise variance, and the properties of
the prototype signal from nature are varied. The exact statistical formulas with exponential growth in time developed in Sec-
tion 2 below also point toward the potential lack of skill of EKF for stochastic parameter estimation.

1.1. Overview of the test models

In the test models here, the signals from nature are assumed to be given by the solution of the time dependent complex
scalar Langevin equation

duðtÞ
dt
¼ �cðtÞuðtÞ þ ixuðtÞ þ r _WðtÞ þ f ðtÞ; ð3Þ

where _WðtÞ is complex white noise and f ðtÞ is a prescribed external forcing. To generate significant model error as well as to
mimic intermittent chaotic instability as often occurs in nature, we allow cðtÞ to switch between stable ðc > 0Þ and unstable
ðc < 0Þ regimes according to a two-state Markov jump process. Here we regard uðtÞ as representing one of the modes from
nature in a turbulent signal as is often done in turbulence models [17–20], and the switching process can mimic physical
features such as intermittent baroclinic instability [21]. As often occurs in practice, we assume that the switching process
details are not known and only averaged properties are modeled. Thus, the Mean Stochastic Model (MSM) with significant
model error given by

duðtÞ
dt
¼ ��cuðtÞ þ ixuðtÞ þ r _WðtÞ þ ~f ðtÞ ð4Þ

is utilized for filtering; here �c > 0 is an average damping constant and ~f ðtÞ is possibly an incorrectly specified forcing. The
SPEKF filters for stochastic parameter estimation are developed below in the context of true signal arising from (3) with
the basic imperfect models developed in (4). The context of (3) and (4) provides a stringent test problem for improving fil-
tering skill through stochastic parameter estimation which we develop below. In Section 2, we introduce the family of sto-
chastic parameter estimation models and develop exactly solvable first and second order statistics for these models
following [15,16]. Details of the model in (3) for true signal are described in Section 3 while a comprehensive study of
the filtering skill through stochastic parameter estimation is presented in Section 4. In particular, Section 4 includes discus-
sion of robustness and sensitivity to stochastic parameters in both the forced and unforced cases as well as learning the forc-
ing from the filter process when the forcing is specified incorrectly. Section 5 contains concluding discussion, which indicates
the fashion in which the stochastic estimation models, developed here, might be directly applied to turbulent dynamical sys-
tems with many degrees of freedom [22–25] as developed in a companion paper [26].

2. Exactly solvable test models for stochastic parameter estimation

2.1. Combined model

We consider a stochastic model for the evolution of state variable uðtÞ together with combined additive, bðtÞ, and multi-
plicative, cðtÞ, bias correction terms:

duðtÞ
dt
¼ ð�cðtÞ þ ixÞuðtÞ þ bðtÞ þ f ðtÞ þ r _WðtÞ;

dbðtÞ
dt
¼ ð�cb þ ixbÞðbðtÞ � b̂Þ þ rb

_WbðtÞ;

dcðtÞ
dt
¼ �dcðcðtÞ � ĉÞ þ rc

_WcðtÞ

ð5Þ
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