Tetrahedron 72 (2016) 1485-1492

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Suzuki–Miyaura reaction catalyzed by a dendritic phosphine–palladium complex

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

ARTICLE INFO

Article history: Received 26 December 2015 Received in revised form 25 January 2016 Accepted 27 January 2016 Available online 29 January 2016

Keywords: Dendrimer Phosphine Catalyst Suzuki–Miyaura reaction

ABSTRACT

We prepared several of a new type of a dendritic ligand with a phosphine core by using tris(4-hydroxyphenyl)phosphine oxide and poly(aryl ether) dendron. In particular, when an amphiphilic dendritic phosphine—palladium complex was used as a catalyst, the aqueous media Suzuki–Miyaura reaction proceeded smoothly to provide the corresponding cross-coupling product at 50 °C. A positive dendritic effect on chemical yields was observed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

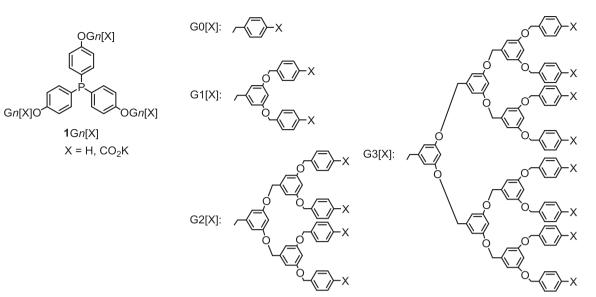
Dendrimers are fascinating man-made macromolecules with their unique physical and chemical properties, and have been widely used as a new class of catalyst supports.¹ Metal-lodendrimers, which have a catalytic site at their core, have received considerable attention because of their unique selectivity and reactivity, which are caused by a specific reaction field constructed by the dendron.² Moreover, their solubilities and physical properties can be altered by peripheral modification.³ For example, by the introduction of hydrophilic groups to the peripheral layer of a hydrophobic dendritic ligand, the corresponding metal core dendrimers as catalysts can become water-soluble and afford unique catalytic activity.⁴

Recently, several examples of a positive dendritic effect on chemical yields—that is, an enhanced reactivity via an increase in the generation number of the dendrimers—have been reported by us⁵ and by other groups.⁶ In our previous study, it was found that a hydrophobic dendron was effective as a reaction field in aqueous media organic syntheses.^{5a,b} In this paper, we report the synthesis of novel phosphine core dendrimers having poly(benzyl ether) dendrons with the modification of the peripheral layer 1Gn[X] (X=H, CO₂K, n=0-3; Fig. 1),⁷ and their application as phosphine ligands to the Suzuki–Miyaura coupling reaction catalyzed by the phosphine–palladium complex.⁸ In particular, by employing amphiphilic dendritic phosphine–palladium complexes having

potassium carboxylate units at the peripheral layer as catalysts, an aqueous media Suzuki–Miyaura reaction proceeded smoothly to provide the corresponding coupling product, and a positive dendritic effect on chemical yields was observed. Suzuki–Miyaura reaction between a boronic acid and an aryl or vinyl halide has become one of the most powerful carbon–carbon coupling methods.⁹ This coupling reaction has been widely used in the synthesis of a variety of fine chemicals and pharmaceutical products, as well as in material science. From the perspective of green chemistry, the development of an aqueous media Suzuki–Miyaura reaction is a very attractive field,¹⁰ as water is an environmentally benign solvent.¹¹

2. Results and discussion

Novel phosphine core dendrimers 1Gn[H] (n=0-3), which are shown in Fig. 1, were synthesized as follows (Scheme 1). An *N*,*N*dimethylformamide (DMF) solution of tris(4-hydroxyphenyl) phosphine oxide **2** and poly(benzyl ether) dendritic bromide **3***Gn* [H] was stirred at 70 °C in the presence of potassium carbonate and a catalytic amount of 18-crown-6 under an argon atmosphere. The obtained dendritic phosphine oxide **4***Gn*[H] was reduced by trichlorosilane in degassed xylene at 120 °C to afford the dendritic phosphine **1***Gn*[H]. All transformations were carried out in good chemical yields in all generations.


We examined the utility of the dendrimer $\mathbf{1}Gn[H]$ (n=0-3) as a phosphine ligand by performing the Suzuki–Miyaura reaction using the corresponding $\mathbf{1}Gn[H]$ –palladium catalyst (Table 1).

Tetrahedro

^{*} Corresponding author. E-mail address: k.fujita@aist.go.jp (K. Fujita).

Fig. 1. Structural formulas of **1**G*n*[X] and G*n*[X] dendrons (*n*=0–3).

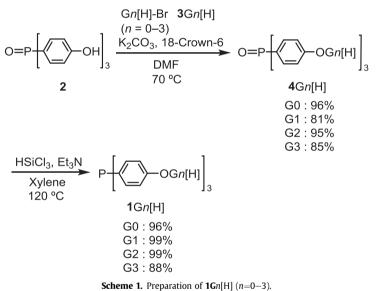
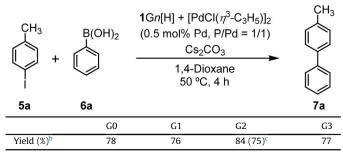



 Table 1

 Suzuki–Miyaura reaction in 1,4-dioxane catalyzed by the 1Gn[H]–palladium

^a Reaction Conditions: 1Gn[H] (0.0055 equiv), $[PdCl(\eta^3-C_3H_5)]_2$ (0.0025 equiv, 0.5 mol % Pd), **5a** (1 equiv), **6a** (1.5 equiv), Cs_2CO_3 (4.5 equiv), 1,4-dioxane (0.5 M based on **5a**), carried out at 50 °C for 4 h.

^b Isolated yield.

^c P/Pd=2/1.

complex^a

The coupling reactions were carried out by using 4-iodotoluene **5a** and phenylboronic acid **6a** with 0.5 mol % of various generations of **1**G*n*[H]—palladium catalysts, which were prepared from **1**G*n*[H] and [PdCl(η^3 -C₃H₅)]₂ in situ (P/Pd=1/1), in 1,4-dioxane at 50 °C for 4 h. As a result, the corresponding cross-coupling product **7a** was obtained in comparable yields in all generations, contrary to our expectations. In addition, the second-generation **1**G2[H]—palladium catalyst prepared at a P/Pd ratio of 2/1 afforded a slightly lower chemical yield of **7a** than the catalyst prepared at P/Pd=1/1, as shown in Table 1, column G2.

Next, we synthesized the dendritic phosphine having carboxylic groups at the peripheral layer $1Gn[CO_2H]$, which was suitable for an aqueous media Suzuki–Miyaura reaction (Scheme 2). Phosphine core dendrimers $1Gn[CO_2Me]$ were synthesized according to a procedure similar to that used for 1Gn[H]. Phosphine core dendrimers having carboxylic groups $1Gn[CO_2H]$ were obtained by hydrolysis of $1Gn[CO_2Me]$ with potassium hydroxide in degassed aqueous solution (THF–methanol–H₂O) at 50 °C, followed by protonation of the product with hydrochloric acid. All

Download English Version:

https://daneshyari.com/en/article/5214050

Download Persian Version:

https://daneshyari.com/article/5214050

Daneshyari.com