ARTICLE IN PRESS

Tetrahedron xxx (2015) 1-8

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

2-Bromo-1-(1*H*-pyrazol-4-yl)ethanone: versatile precursors for novel mono-, bis- and poly $\{6-(1H-pyrazol-4-yl)-[1,2,4]$ triazolo [3,4-b][1,3,4]thiadiazines $\}$

Mostafa E. Salem, Ahmed F. Darweesh, Ahmad M. Farag, Ahmed H. M. Elwahy*

Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt

ARTICLE INFO

Article history:
Received 30 October 2015
Received in revised form 25 November 2015
Accepted 10 December 2015
Available online xxx

Keywords: Cyclocondensation Alkylation Triazolothiadiazine Pyrazole

ABSTRACT

A simple synthesis of novel mono-, bis- and poly{6-(1*H*-pyrazol-4-yl)-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines} is reported. The formation of the target compounds was achieved by the reaction of 2-bromo-1-(5-methyl-1-phenyl-1*H*-pyrazol-4-yl)ethanone with the appropriate aminotriazolethiol or by the reaction of 6-pyrazolyl-7*H*-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine-3-thiol with the appropriate di- and poly(bromo) compounds. The structures of the newly synthesized compounds were established by spectroscopy and elemental analyses.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Pyrazole derivatives are an important class of heterocyclic compound for being key substructures in a variety of compounds with important biological properties. They are known to possess a wide spectrum of activities such as antimicrobial, antiinflammatory, antiparasitic, antidepressant, antiviral, antifungal, and antitumour activities. Moreover, the pyrazole nucleus represent the core unit in a variety of drugs such as celecobix (Celebrex), last sidenafil (Viagra), and rimonabant (Acomplia).

Moreover, much attention has been paid over the past decade for the synthesis of 1,2,4-triazoles and their heterocyclic fused analogues, triazolothiadiazines, for their therapeutically importance. They are reported to possess a wide spread of medical applications such as antibacterial, antifungal, anticancer, antitumour, anticonvulsant, anti-inflammatory, antimicrobial activity and analgesic properties. $^{15-19}$

In addition, compounds including bis-heterocyclic moieties were encountered in many bioactive natural products. Recent reports showed that among libraries of derivatized heterocycles, the most active library compounds have a bis-heterocyclic structure. Bis-heterocycles in which two bioactive heterocycles are tethered via a flexible linker were reported to be

In addition, bis-heterocyclic compounds separated by a carbon chain or other functional group have also been recently reported as corrosion inhibitors. 31

Furthermore, over recent years there have been an increasing number of reports of so-called 'multi-armed' molecules. ³² For example, benzene cores appended by six flexible arms, each terminated by an anionic group, have recently been shown to form micelles in aqueous solution. ^{32a,b} Multi-armed molecules, in which a combination of an aromatic core and aromatic side chains find uses as discotic liquid crystals. ^{32q} Some multi-armed derivatives with arms containing donor atoms have been utilized as metal ion ligands. ³³ Multi-armed compounds have also been used as building units for dendrimers. ³⁴ Some conjugated multi-armed compounds exhibit interesting properties in materials science. ^{35,36}

Motivated by these findings, we report herein on the synthesis of some novel mono-, bis- and poly heterocyclic compounds incorporating a combination of pyrazole and [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine pharmacophores for the first time. The combination of two pharmacophores into a single molecular skeleton is a well-established approach for designing more potent drugs with significant increase in activity.

The strategy used for the synthesis of the target {6-(1*H*-pyrazol-4-yl)-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine} depends mainly on the initial formation of 2-bromo-1-(5-methyl-1-phenyl-1*H*-

http://dx.doi.org/10.1016/j.tet.2015.12.024

0040-4020/© 2015 Elsevier Ltd. All rights reserved.

anticancer $^{25-28}$ and as antimicrobial agents. 29 Along with these activities, some bis-heterocyclic derivatives also exhibited potent antialzheimer and antiprion activity. 30

^{*} Corresponding author. Tel.: +20 1000294190; fax: +20 2 35727556; e-mail address: aelwahy@hotmail.com (A.H.M. Elwahy).

pyrazol-4-yl)ethanone (**5**) as a key intermediate and subsequent reaction with the appropriate aminotriazolethiol. The amino and mercapto groups in these compounds serve thereby as readily accessible nucleophilic centres for the preparation of *N*-bridged heterocycles.

2. Results and discussion

The desired 2-bromo-1-(5-methyl-1-phenyl-1H-pyrazol-4-yl) ethanone (**5**) was synthesized by the reaction of phenylhydrazine with ((dimethylamino)methylene)pentane-2,4-dione (**3**), obtained upon treatment of acetylacetone with dimethylformamide dimethylacetal (DMFDMA), to give 1-phenyl-5-methyl-4-acetypyrazole (**4**)³⁷ followed by bromination upon treatment with Br₂ in AcOH to give **5**³⁸ (Scheme 1).

Scheme 1. Synthesis of 2-bromo-1-(5-methyl-1-phenyl-1*H*-pyrazol-4-yl)ethanone.

Thus, reaction of **5** with 4-amino-3-mercapto-1,2,4-triazole derivatives **6a,b**³⁹ in refluxing ethanol in the presence of a few drops of triethylamine as catalyst, afforded the novel pyrazolyl(5,6-dihydro-s-triazolo[3,4-b]thiadiazines) **8a** and **8b** in 70 and 75% yields, respectively, *via* initial formation of 2-(4-amino-5-methyl-4*H*-1,2,4-triazol-3-ylthio)-1-(5-methyl-1-phenyl-1*H*-pyrazol-4-yl) ethanone, followed by cyclocondensation in refluxing acetic acid (Scheme 2).

Scheme 2. Synthesis of pyrazolyl(5,6-dihydro-s-triazolo[3,4-b]thiadiazines).

In continuation of this work, we also describe simple and efficient routes for the synthesis of novel bis(6-pyrazolyl-s-triazolo [3,4-b][1,3,4]thiadiazines) **10a**—**d** in which the pyrazolyl-triazolothiadiazine is linked to the alkyl spacer through the triazole ring (Schemes 3 and 4).

Scheme 3. Synthesis of bis(6-pyrazolyl-s-triazolo[3,4-b][1,3,4]thiadiazines) linked to methylene or propylene spacer.

The synthetic approach used for the synthesis of the target biscompounds **10a**,**c** includes the initial formation of the appropriate bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)alkanes **9a**,**c** as precursors, which upon treatment with two equivalents of **5** in refluxing EtOH, containing few drops of triethylamine, afforded the corresponding bis(6-pyrazolyl triazolothiadiazines) **10a** and **10c** in 73 and 70% yields, respectively.

Br
$$H_2N$$
 N_1 N_2 N_1 N_2 N_1 N_2 N_1 N_2 N_3 N_4 N_4 N_5 N_5

Scheme 4. Synthesis of bis(6-pyrazolyl-s-triazolo[3,4-b][1,3,4]thiadiazines) linked to ethyl or butyl spacer.

The bis(triazoles) **9a**—**d** can be obtained by a one-step reaction between aliphatic dicarboxylic acids and two molar equivalents of thiocarbohydrazide at the melting temperature for 30 min according to the method described by Xu *et al.*⁴⁰

The reaction pathway is assumed to involve S-alkylation to give the corresponding bis(aminotriazole) intermediates, followed by intramolecular cyclocondensation to give **10**. The proposed mechanism was confirmed by the possible isolation of the corresponding bis(triazolyl)bis(sulfanediyl)bis(1*H*-pyrazol-4-yl)ethanone **11b** and **11d** upon treatment of **9b,d** with two equivalents of **5** in refluxing EtOH containing a few drops of triethylamine. The latter compounds underwent cyclocondensation in refluxing acetic acid to give **10b** and **10d**, respectively (Scheme 4). Compounds **10b,d** can also be alternatively obtained in 79, 80% yield in a one step reaction of **9b,d** with **5** in refluxing acetic acid containing sodium acetate.

The same methodology was extended to the preparation of bis(*s*-triazolo[3,4-*b*][1,3,4]thiadiazines) **14** in which the pyrazolyl-triazolothiadiazine is linked to a benzene core *via* an alkyl linkage as depicted in Scheme 4. Thus, treatment of 5,5'-(1,4-phenylenebis(methylene))bis(4-amino-4*H*-1,2,4-triazole-3-thiol) **12** with two equivalents of **5** in refluxing EtOH containing a few drops of triethylamine afforded the corresponding bis(amino-triazoles) **13**. The latter compound underwent cyclocondensation in refluxing acetic acid to give **14** (Scheme 5). Compound **12** was obtained by the reaction of one mole of 2,2'-(1,4-phenylene)diacetic acid with two moles of thiocarbohydrazide under fusion conditions.⁴¹

Scheme 5. Synthesis of bis(6-pyrazolyl-s-triazolo[3,4-*b*][1,3,4]thiadiazines) linked to xylyl spacer.

We also studied the synthesis of novel twofold branched pyrazolyltriazolothiadiazines 18a-c which are linked to an alkyl spacer via a thioether group as outlined in Scheme 6.

Download English Version:

https://daneshyari.com/en/article/5214222

Download Persian Version:

https://daneshyari.com/article/5214222

Daneshyari.com