Tetrahedron 71 (2015) 6099-6103

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Acid-catalyzed cascade radical addition/cyclization of arylacrylamides with ketones

Tetrahedror

Xiao-Feng Xia*, Su-Li Zhu, Minglu Zeng, Zhen Gu, Haijun Wang, Wei Li

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China

ARTICLE INFO

Article history: Received 24 May 2015 Received in revised form 23 June 2015 Accepted 29 June 2015 Available online 3 July 2015

Keywords: Acid-catalyzed Radical addition Cyclization Arylacrylamides Ketones

ABSTRACT

A Brønsted acid catalyzed cascade radical addition/cyclization of arylacrylamides with ketones was described. The reaction tolerates a series of functional groups, such as nitro, methoxyl, carbonyl, bromo, chloro, fluoro, and trifluoromethyl groups. γ-Peroxyketones were also prepared using *N*-arylsulfonylacrylamides as substrates under acid-catalyzed conditions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a series of metal-catalyzed oxidative 1,2difunctionalization of alkenes has attracted considerable attention, providing the most efficient strategy for the construction of functionalized organic compounds. ¹ Owing to important bioactivity in a wide variety of natural products, pharmaceuticals, and bioactive molecules, the search for sustainable and convenient methods for the synthesis of oxindoles is of constant interest in modern organic synthesis.² Very recently, many cascade methods employing oxidative cross-couplings to bifunctionalized alkene substrates, followed by cyclization to produce oxindoles derivatives have been achieved. ^{1f}Among which, the radical alkylarylation, ³arylcarbonylation, ⁴azidoarylation, ⁵nitroarylation, ⁶arylphosphorylation, ⁷arylsulfonylation, ⁸and aryltrifluoromethylation⁹ of N-arylacrylamides have since been reported by several groups, allowing the direct formation of oxindole frameworks. To the best of our knowledge, these protocols using ketones as alkyl radicals were not well-documented. For instance, in 2013, Duan group reported an efficient silver-catalyzed oxidative cyclization of acrylamides with carbonyl compounds. ^{3e} Ji group reported a metal-free

* Corresponding author. Tel./fax: +86 510 85917763; e-mail address: xiaxf@ jiangnan.edu.cn (X.-F. Xia).

oxidative radical addition of carbonyl compounds to α , α -diaryl allylic alcohols. ¹⁰In 2014, Klussmann group discovered that under a Brønsted acid catalyzed conditions, ketone radicals could be utilized to develop a multicomponent radical addition of *tert*-butyl hydroperoxide (TBHP) to olefins (Scheme 1-a). ¹¹Herein, we envisioned that this metal-free catalytic conditions can realize cascade radical addition/cyclization of arylacrylamides with ketones to obtain oxindoles derivatives (Scheme 1-b).

Scheme 1. Acid-catalyzed radical addition.

2. Results/discussion

To test the feasibility of our hypothesis, we examined the reaction of N-arylacrylamide 1a with acetone 2a under various conditions, and the results are summarized in Table 1. Using 10% TsOH as catalyst, 3 equiv TBHP (5–6 M in decane) as oxidant, acetone as solvent, a 40% target product **3a** was obtained (Table 1, entry 1). Encouraged by the initial results, the screening of oxidants, catalysts, as well as catalyst loadings has been investigated to establish the optimized reaction conditions. When the loading of TBHP was increased to 4 equiv, a 61% product **3a** was separated (entry 2). The reaction failed using 1 atm oxygen as oxidant. Using 4 equiv H₂O₂ as oxidant, the product 3a can be produced in 22% yield. When 4 equiv TBHP (70% w in water) was used, a 65% product **3a** was obtained. Other acids such as MeSO₃H, CF₃COOH, and HCl were also tried, and 10% MeSO₃H gave a better result (entry 6). When 10 equiv acetone was used in CH₃CN as cosolvent, a lower yield was obtained (entry 7). Last, in the absence of acid, no product was detected. It is worth mentioning that when 5 mmol of 1a was used, a 58% yield of 3a was obtained, indicating that this method is scalable (entry 11).

Table 1

Optimization of reaction conditions for 3a^a

	+ N I 10	O Catalys Oxidar Solver	st nt nt		
	ia	20		Jd	
Entry	Catalyst	Oxidant	Solvent	T [[°] C]	Yield (%) ^b
1	10% TsOH	3 equiv TBHP	Acetone	60	40%
2	10% TsOH	4 equiv TBHP	Acetone	60	61%
3	10% TsOH	1 atm O ₂	Acetone	60	0
4	10% TsOH	4 equiv H ₂ O ₂	Acetone	60	22%
5	10% TsOH	4 equiv TBHP	Acetone	60	65%
		(70% w in water)			
6	10% MeSO ₃ H	4 equiv TBHP	Acetone	60	67%
7 ^c	10% MeSO₃H	4 equiv TBHP	CH₃CN	80	30%
8	10% CF ₃ COOH	4 equiv TBHP	Acetone	60	15%
9	10% HCl	4 equiv TBHP	Acetone	60	20%
10	—	4 equiv TBHP	Acetone	60	0%
11 ^d	10% TsOH	4 equiv TBHP	Acetone	60	58%
		(70% w in water)			

Bold and italic indicates the best reaction conditions of the reaction.

 $^{\rm a}$ Reaction conditions: 1a (0.3 mmol), TBHP (5–6 M in decane), and solvent (2.0 mL), 12 h.

^b Isolated vield.

^c 10 equiv acetone was used.

^d 5 mmol **1a** was used in 5 mL acetone, 24 h.

With the optimized conditions in hand (Table 1, entry 6), we next set out to explore the substrate scope and the limitations of the alkylcarbocyclization reaction (Scheme 2). The effect of various substitution patterns on the N-aryl moiety was firstly investigated including fluoro, chloro, bromo, nitro, methoxyl, acetyl, trifluoromethyl and methyl substituents, and the corresponding products were obtained in moderate to good yields. The naphthyl group was also tolerated in this reaction, and a 62% product 3j was produced. When the substituent Cl was substituted in the meta position, a mixture of isomers was observed, and only the major isomer **3k** can be separated. Similarly, a mixture of **3m** and **3m**' (3:5) isomers were obtained when the methyl group was substituted in the meta position. N-arylacrylamide 11 bearing an ortho-substituted methyl group was also tried, and the desired oxindole 31 was obtained in moderate yield. It was found that N-protected substrates, such as phenyl and benzyl, could be used as effective substituent groups for this transformation (**3n** and **3o**). Tetrahydroquinoline derivative under the oxidative conditions successfully yielded the desired tricyclic oxindole 3p in 35% yield. Notably, the CH₂OH substituent was well tolerated in this reaction. 2-(methoxymethyl)-N-methyl-N-phenylacrylamide was also a suitable substrate, and a 60% product **3r** was obtained. An asymmetric ketone like butan-2one showed a preference for radical formation at the secondary carbon, giving the major product **3s** in 35% yield. However, N-free *N*arylacrylamides and phenyl methacrylate were failed in this reaction. When 1,3-dicarbonyl compounds were used in the reaction system, no target products were detected (**3v** and **3w**). Interestingly, when *N*-Ts-*N*-arylacrylamides were used as substrates, γ -peroxyketones were produced in moderate yields (Scheme 3).

Scheme 3. The synthesis of γ -peroxyketones.

To gain further understanding about the reaction mechanism, inhibition experiments were conducted (Scheme 4). When 2.0 equiv of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) was

Download English Version:

https://daneshyari.com/en/article/5214242

Download Persian Version:

https://daneshyari.com/article/5214242

Daneshyari.com