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The first diastereoselective synthesis of natural fungal metabolite (+)-andytriol 1, the proposed bio-
synthetic precursor of varioxirane, was accomplished in nine linear steps from 2,3-0O-isopropylidene-p-
ribose. A biomimetic Katsuki—Sharpless epoxidation was then applied to construct the oxirane ring of
the varioxiranes. The absolute configuration of the target molecule (+)-1 was for the first time confirmed
by the single X-ray analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

(+)-Andytriol 1 (Fig. 1) was first isolated from a static culture of
a pure strain of the fungus, Aspergillus variecolor (imperfect state of
Emericella variecolor) as an unknown substance (X) along with other
metabolites-6-methoxymellein, siderin, andibenin, and andilesin
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Fig. 1. Natural compounds 1-4.
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A—C.!'Its structure was later identified by A. Dunn and R. Johnstone
as 2-methoxy-6-(3,4-dihydroxyhepta-1,5-dienyl)benzyl alcohol.?
However, the absolute configuration of natural compound 1
remained unresolved.

In 2002, Malmstrem et al. reported the isolation of natural
compounds, varioxirane (—)-2 and varitriol (+)-3 from a marine
derived strain of a fungus E. variecolor.” Interestingly, initial results
of the biological screening of varitriol (+)-3 against the (NCI) 60-
cell line in vitro panel showed remarkable cytotoxic activity to-
ward renal, breast and CNS cancer cell lines. Authors also proposed
a hypothetical biogenetic relationship between these products via
enzymatic intramolecular Sy2 epoxide ring opening and pointed
out that natural andytriol 1 could be involved in this biosynthetic
pathway to 3 via epoxide 2. Accordingly, it could be surmised that
the absolute stereochemistry of natural benzyl alcohol 1 might be
3R and 4S considering the configuration of natural varitriol (+)-3
and varioxirane (—)-2. Recently, another related secondary me-
tabolite, varioxiranediol (—)-4 was isolated from the same endo-
phytic fungus. The structure and absolute configuration of this
epoxide 4 was confirmed by the X-ray analysis supporting the
structural relationship of the isolated natural compounds.? To this
date, only little attention has been devoted to the chemistry of 1
and 2. In 2013, G. Sudhakar and J. Raghavaiah reported the first
synthesis of (—)-2 (9 steps, 4% overall yield) starting from croto-
naldehyde applying a Sharpless kinetic resolution. The authors
supported the proposed biosynthetic pathway by converting the
epoxide 2 to varitriol 3.> Moreover, using the same strategy, they


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:tibor.gracza@stuba.sk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tet.2015.09.002&domain=pdf
www.sciencedirect.com/science/journal/00404020
http://www.elsevier.com/locate/tet
http://dx.doi.org/10.1016/j.tet.2015.09.002
http://dx.doi.org/10.1016/j.tet.2015.09.002
http://dx.doi.org/10.1016/j.tet.2015.09.002

8408 M. Markovic et al. / Tetrahedron 71 (2015) 8407—8415

were able to accomplish the synthesis of the antipode of natural
andytriol (+)-1 in nine steps (3% overall yield, [a]%o —36 (c 0.05,
CHCl3), lit.? [0]3* +43 (c 0.22, CHCl3)) and indirectly confirm the
absolute configuration of natural (+)-1.

In the course of our long-term program directed towards the
synthesis of bioactive natural compounds,® we have developed the
synthesis of varitriol” and examined its antitumor activity. Al-
though, the biological activity of the synthetic varitriol (+)-3 has
not been proven,® we turned our attention towards other poten-
tially bioactive and structurally related compounds (+)-1 and
(—)-2. Herein, we report the first total synthesis of natural andytriol
1 and a biomimetic approach to varioxiranes.

2. Results and discussion

The retrosynthetic analysis of natural (3R,4S)-diene 1 pointed to
the coupling of hexenose 5 and suitable sulfone (6 or 7) via
Kocienski-Julia olefination® (Scheme 1). The protected sulfone
could be readily obtained from 2,3-dimethylanisole or 3-
anisaldehyde. The aldehydic partner for the olefination, carbohy-
drate subunit 5 having the same configuration at C-2 as natural
enantiomer 1, could be accessible from b-ribose by diaster-
eoselective introduction of the prop-1-enyl group at C-1 followed
by the carbon chain shortening at the other end (C-3). Finally, the
key operation in the synthesis of varioxiranes would be a bio-
mimetic chemo- and diastereoselective epoxidation of the corre-
sponding C5—C6 double bond of 1.
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Scheme 1. Retrosynthetic analysis of 1 and 2.

D-ribose

The synthesis of the aromatic sulfones 6 and 7, having an O-
acetyl or O-TBS protecting group, respectively, is shown in Scheme
2. Starting dibromo-compound 8 was prepared from 2,3-
dimethylanisole applying a known radical bromination method.°
Subsequently, selective replacement of the bromide in 8 with so-
dium acetate gave compound 9 in 80% yield. Next, the second
bromide of 9 was substituted with potassium phenyl-
tetrazolylthiolate followed by oxidation using hydrogen peroxide-
ammonium molybdate provided the corresponding methylene
partner for the olefination, O-acetyl protected sulfone 6 in 70% yield
over two steps.

The aromatic sulfone 7 bearing the O-TBS protecting group was
synthesized using a similar strategy. The chloro-compound 10 is
available in four steps from m-anisaldehyde using known literature
methods."" '3 Substitution of the chloride group in 10 and oxida-
tion of the corresponding sulfide gave O-TBS protected sulfone 7 in
70% yield over two steps.
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Scheme 2. Synthesis of sulfones 6 and 7. Reagents and conditions: (a) AcONa, AcOH,
110 °C, 2 h; (b) KSPT, DMEF, 1t, 15 h; (c) Mo(VI)/H,02, MeOH, 0 °C to rt, 10 h; (d) KSPT,
DMEF, rt, 15 h; (e) Mo(VI)/H;0,, MeOH, 0 °C to rt, 15 h.

The aldehydic fragment for the olefination, hexenose derivative
5 was prepared from p-ribose or its commercially available aceto-
nide derivative in seven steps (48% overall yield) (Scheme 3).
Grignard addition of propyn-1-ylmagnesium bromide at C-1 of 2,3-
O-isopropylidene-p-ribose provided the corresponding alkyne with
excellent anti-diastereoselectivity."* Oxidative cleavage of the vic-
inal diol using NalO4 delivered single diastereomer 11 in 77% yield
as anomeric lactols. The configuration at C-4 of compound 11 was
confirmed on the basis of "H NMR spectroscopy. LAH reduction'® of
both, the triple bond and carbonyl group in 11, afforded partially
protected tetrol 12. Finally, tetraol 14 bearing a 3,4-O-iso-
propylidene protection group was prepared using a selective pro-
tection—deprotection sequence.'® Thus, the protection of all
hydroxyl groups with 2,2-dimethoxypropane in the presence of
Dowex H' followed by hydrolysis of the terminal acetonide gave
vicinal diol 14, which was isolated in 33% yield together with 13
(51%); the latter can be recycled. All attempts to increase the yield
of this sequence failed.
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Scheme 3. Synthesis of the aldehyde 5. Reagents and conditions: (a) propyn-1-
ylmagnesium bromide, THF, rt, 1 h; (b) NalOg4, tBuOH/H,0, rt, 1.5 h; (c) LAH, THF, re-
flux, 2 h; (d) 60% AcOH, 60 °C, 2 h; (e) DMP, CH,CI,, DOWEX marathon (H"), rt, 2 h; (f)
80% AcOH, 40 °C, 2 h; (g) NalOg4, tBuOH/H,0, rt, 1.5 h.

Having the diol 14 in hand, the synthesis continued with a mild
NalO4 oxidation to produce crude hexenose 5 in 89% yield. The
aldehyde 5 was then subjected to Kocienski-Julia olefination with
sulfones 6 and/or 7 without further purification. The final steps in
the synthesis of natural (3R,4S)-2-methoxy-6-(3,4-
dihydroxyhepta-1,5-dienyl) benzyl alcohol 1 are shown in
Scheme 4. Thus, the Kocieniski-Julia coupling was performed with
KHMDS in dimethoxyethane applying the so-called Barbier proto-
c0l.” The reaction using O-acetylated sulfone 6 provided olefin 15
as a single E-isomer in 75% yield. Subsequent removal of all
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