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a b s t r a c t

The aim of this paper is to study the high order difference scheme for the solution of mod-
ified anomalous fractional sub-diffusion equation. The time fractional derivative is
described in the Riemann–Liouville sense. In the proposed scheme we discretize the space
derivative with a fourth-order compact scheme and use the Grünwald–Letnikov discretiza-
tion of the Riemann–Liouville derivative to obtain a fully discrete implicit scheme. We ana-
lyze the solvability, stability and convergence of the proposed scheme using the Fourier
method. The convergence order of method is Oðsþ h4Þ. Numerical examples demonstrate
the theoretical results and high accuracy of the proposed scheme.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In recent years there has been a growing interest in the field of fractional calculus [11,19,21,23]. Fractional differential
equations have attracted increasing attention because they have applications in various fields of science and engineering
[8]. Many phenomena in fluid mechanics, viscoelasticity, chemistry, physics, finance and other sciences can be described
very successfully by models using mathematical tools from fractional calculus, i.e., the theory of derivatives and integrals
of fractional order [9]. Some of the most applications are given in the book of Oldham and Spanier [22], the book of Podlubny
[23] and the papers of Metzler and Klafter [18], Bagley and Trovik [1]. Many considerable works on the theoretical analysis
[10,29] have been carried on, but analytic solutions of most fractional differential equations can not be obtained explicitly
[9,13,24–26]. So many authors have resorted to numerical solution strategies based on convergence and stability analysis
[2,3,8,12,28,30,31]. Liu et al. have carried on so many works on the finite difference method of fractional differential equa-
tions [14–16]. Sun et al. in [11,27] did nice investigation on the fractional diffusion-wave system and constructed some dif-
ference schemes with stability and convergence analysis. Also we refer the interested reader to [6,7] for some recent
advances on fractional two-dimensional anomalous subdiffusion equation.
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There are several definitions of a fractional derivative of order a > 0 [21,22]. The two most commonly used are the Rie-
mann–Liouville and Caputo. The difference between the two definitions is in the order of evaluation [20]. Recently, models
have been proposed to describe processes that become less anomalous as time progresses by the inclusion of a secondary
fractional time derivative acting on a diffusion operator with a nonlinear source term [16,17]
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where Cð�Þ is the gamma function. Also, let f ðu; x; tÞ satisfies the Lipschitz condition with respect to u:

f ðu; x; tÞ � f ðeu; x; tÞ�� �� 6 L u� eu�� ��; 8 u; eu;
where L is a Lipschitz constant. Liu et al. [17] proposed a semi-discrete approximation and a full discrete finite element
approximation for the modified anomalous subdiffusion (1.1)–(1.3) in a finite domain. They proved the stability and conver-
gence of the proposed methods. Authors of [16] proposed a conditionally stable difference scheme for the solution of (1.1)–
(1.3). They showed that the convergence order of method is Oðsþ h2Þ with the energy method.

The aim of this paper is to propose an unconditionally stable difference scheme of order Oðsþ h4Þ for the solution of Eq.
(1.1). We apply a fourth-order difference scheme for discretizing the spatial derivative and Grünwald–Letnikov discretiza-
tion for the Riemann–Liouville fractional derivative. We will discuss the stability of the proposed method by the Fourier
method and show that the compact finite difference scheme converges with the spatial accuracy of fourth-order using Fou-
rier analysis.

The outline of this paper is as follows. In Section 2, we introduce the derivation of the new method for the solution of Eq.
(1.1). This scheme is based on approximating the time derivative of the mentioned equation by a scheme of order OðsÞ and
the spatial derivative with a fourth-order compact finite difference scheme. In this section we obtain the matrix form of the
proposed method and show its solvability. In Section 3 we prove the unconditional stability property of the method using the
Fourier method. In Section 4 we present the convergence of method and show that the convergence order is Oðsþ h4Þ. The
numerical experiments of solving Eq. (1.1) with the method developed in this paper for several test problems and compar-
ison of numerical results with the results of some numerical methods in the literature are given in Section 5. Finally conclud-
ing remarks are drawn in Section 6.

2. Derivation of method

For positive integer numbers M and N, let h ¼ L
M denotes the step size of spatial variable, x, and s ¼ T

N denotes the step size
of time variable, t. So we define

xj ¼ jh; j ¼ 0;1;2; . . . ;M;

tk ¼ ks; k ¼ 0;1;2; . . . ;N:

The exact and approximate solutions at the point ðxj; tkÞ are denoted by uk
j and Uk

j , respectively. We first state the fourth-or-
der compact scheme of the second derivative in the following lemma which is taken from [8].

Lemma 1 [8]. The fourth-order compact difference operator with maintaining three-point stencil to approximate the uxx is
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in which d2
x uj ¼ ðuj�1 � 2uj þ ujþ1Þ. Now using the relationship between the Grünwald–Letnikov formula and the Riemann–Liou-

ville fractional derivative, we can write [30]
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