Tetrahedron 71 (2015) 8200-8207

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Rhodium(III)-catalyzed annulation of 2-arylimidazo[1,2-*a*]pyridines and alkynes via direct double C–H activation

College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, PR China

A R T I C L E I N F O

Article history: Received 23 May 2015 Received in revised form 27 July 2015 Accepted 10 August 2015 Available online 14 August 2015

Keywords: Rhodium(III) Co(OAc)₂·4H₂O 2-Arylimidazo[1,2-*a*]pyridine C-H activation

ABSTRACT

A series of naphtho[1',2':4,5]imidazo[1,2-*a*]pyridines were synthesized smoothly from 2-arylimidazo[1,2-*a*]pyridines and alkynes involving rhodium(III)-catalyzed C–H bond functionalization. The process selected $Co(OAc)_2 \cdot 4H_2O$ as the co-catalyst for the first time and minimized the reaction time to 2 h under air atmosphere. Some products exhibited deep blue luminescence properties.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Direct construction of complex organic molecules by utilizing simple starting materials and process is the primary aspiration of many chemists. The transition metal-catalyzed C-H bond activation provides a shortcut route for chemical synthesis and meets the requirements of green and sustainable chemistry. During the past decades, drastic achievements have been made in this field.¹ In particular, Rh(III) catalysts exhibited some merits, such as stability, multiple valents and excellent application in C-H functionalization.² In the past few years, rhodium(III)-catalyzed annulation of aromatic substrates with alkynes has been extensively studied.³ The rhodium(III)-catalyzed coupling reaction between benzoic acid and internal alkynes using $Cu(OAc)_2 \cdot H_2O$ as the oxidant was reported in 2007.⁴ Many other acids such as heteroaromatic and acrylic acids could also undergo the rhodium(III)-catalyzed intermolecular cyclization with alkynes.⁵ Henceforth, phenols,⁶ alcohols,⁷ imines,⁸ amides,⁹ phenylazoles,¹⁰ and phenylpyridines¹¹ have been reported in coupling with internal alkynes via rhodium(III)-catalyzed oxidative annulation. Recently, aza-fused polycyclic quinolines,¹² pyrrolo[1,2-*a*]quinoline,¹³ multisubstituted 2-aminoquinolines,¹⁴ substituted naphtho[1,8-*bc*]pyrans,¹⁵ and phenanthroimidazoles¹⁶ have been established successfully through the rhodium(III)-catalyzed C-H bond activation and alkyne annulation. All these reports demonstrate that rhodium(III)-

catalyzed annulation between arenes and alkynes is an important strategy to construct polycyclic aromatic frameworks.

Imidazo[1,2-*a*]pyridine derivant is an important fragment that exists in many anxyolytic drugs, such as alpidem, necopidem, saripidem et al. (Fig. 1).¹⁷ The majority of reports focused on the decoration of imidazo[1,2-*a*]pyridine.¹⁸ The strategy of cross-coupling and C–H activation was usually applied to functionalization of imidazo[1,2-*a*]pyridine.¹⁹ However, there were few reports on the annulation of 2-phenylimidazo[1,2-*a*]pyridines via rhodium(III)catalyzed double C–H activation. Inspired by the above reports, we speculated that 2-phenylimidazo[1,2-*a*]pyridine could participate in the annulation reaction with internal alkynes via double C–H bond activation.

2. Results and discussion

The oxidative annulation of heterocyclic frameworks was performed using 2-phenylimidazo[1,2-*a*]pyridine **1a** and diphenylacetylene **2a** as the model substrates. [RhCp*Cl₂]₂ (5 mol %) was selected as the catalyst in the initial test. Without any additives attendance, the results showed that no reaction occurred (Entry 1, Table 1). Cu(NO₃)₂·3H₂O, CuCl₂·2H₂O and K₂S₂O₈ as the additives do not fit the catalytic system (Entries 2–4, Table 1). The addition of Cu(OTf)₂ could generate the desired product **3aa**, but only 10% yield was obtained (Entry 5, Table 1). When Cu(OAc)₂·H₂O was introduced as an additive, the yield increased remarkably (81%) (Entry 6, Table 1). Nevertheless, in the absence of the catalyst, Cu(OAc)₂·H₂O could not promote the reaction (Entry 7, Table 1). Subsequently, we tested other transition metal catalysts, such as

^{*} Corresponding authors. Tel./fax: +86 371 6776 3866; e-mail addresses: xqhao@ zzu.edu.cn (X.-Q. Hao), mpsong@zzu.edu.cn (M.-P. Song).

Fig. 1. Drugs with imidazo[1,2-a]pyridine framework.

lytic cycle.

Table 1

Screening of the reaction conditions

Entry ^a	Catalyst	Additive	Solvent	<i>t</i> (h)	Yield ^b (%)
1	[RhCp*Cl ₂] ₂	_	Toluene	12	_
2	[RhCp*Cl ₂] ₂	$Cu(NO_3)_2 \cdot 3H_2O$	Toluene	16	_
3	[RhCp*Cl ₂] ₂	CuCl ₂ ·2H ₂ O	Toluene	16	_
4	[RhCp*Cl ₂] ₂	$K_2S_2O_8$	Toluene	16	_
5	[RhCp*Cl ₂] ₂	Cu(OTf) ₂	Toluene	16	10
6	[RhCp*Cl ₂] ₂	$Cu(OAc)_2 \cdot H_2O$	Toluene	16	81
7	_	$Cu(OAc)_2 \cdot H_2O$	Toluene	16	_
8 ^c	$Pd(OAc)_2$	$Cu(OAc)_2 \cdot H_2O$	Toluene	8	17
9 ^c	[RuCl ₂	$Cu(OAc)_2 \cdot H_2O$	Toluene	8	4
	(p-cymene)]2				
10	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	Toluene	16	87
11	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	92
12	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	Xylene	2	41
13	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	AcOH	2	12
14	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	Dioxane	2	77
15	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	2-Methyl-2-butanol	2	81
16	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DCE	2	26
17	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	o-Xylene	2	28
18 ^d	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	88
19 ^e	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	76
20	[RhCp*Cl ₂] ₂	$Co(OAc)_2$	DMF	2	92
21 ^t	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	64
22 ^g	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	14
23 ^h	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	64
24 ⁱ	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	76
25 ^c	[RhCp*Cl ₂] ₂	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	87
26	—	$Co(OAc)_2 \cdot 4H_2O$	DMF	2	—

^a Reaction conditions unless otherwise specified: **1a** (0.10 mmol), **2a** (0.20 mmol), Cat. (5 mol %), additive (0.12 mmol), solvent (1 mL), 110 °C, air atmosphere.

^e 70 °C.

^f [RhCp*Cl₂]₂ (2.5 mol %).

^g Co(OAc)₂·4H₂O (5 mol %).

Pd(OAc)₂ and [RuCl₂(*p*-cymene)]₂, and poor yields were observed (Entries 8–9, Table 1). In the previous studies, Cu and Ag salts were often used as the additives to accelerate the pace of the reaction.^{3–16} Inspired by Yoshikai's work,²⁰ we wondered whether Co salts could take place of them and promote the reaction successfully. It was exciting that the desired product **3aa** was obtained in 87% yield when Co(OAc)₂·4H₂O was introduced to our catalytic system (Entry 10, Table 1).

With $[RhCp^*Cl_2]_2$ and $Co(OAc)_2 \cdot 4H_2O$ chosen as catalyst and additive, the solvent of the reaction was then screened. DMF was chosen as the initial solvent, and the substrates have been completely consumed after 8 h in good yield (92%). After the initial test,

the reaction time was monitored and minimized to 2 h. To our delight, the reaction was still finished completely. With 2 h as the standard reaction time (Entry 11, Table 1), other solvents were also attempted. Low yields were obtained in AcOH, DCE and o-xylene (Entry 13, and Entries 16-17, Table 1). Additionally, 77% yield was achieved in dioxane as well as 81% yield in 2-methyl-2-butanol (Entries 14–15, Table 1). A moderate yield could be acquired in xylene (Entry 12, Table 1). The yield was decreased to 88% and 76% when lowering the temperature at 90 °C and 70 °C, respectively (Entries 18–19, Table 1). When Co(OAc)₂ was applied to the reaction as the additive, it did not affect the catalytic activity, and still generate 92% yield (Entry 20, Table 1). To further investigate the effects of catalyst and additive loading on the catalytic system, more experiments were carried out. Decreasing the loading of $[RhCp^*Cl_2]_2 - 2.5 \text{ mol }\%$ in the presence of 1.2 equiv $Co(OAc)_2 \cdot 4H_2O$, an unsatisfactory result (64%) was observed after 2 h (Entry 21, Table 1). Using 5.0 mol % [RhCp*Cl₂]₂ as the catalyst, the decrease in the dosage of $Co(OAc)_2 \cdot 4H_2O$ led to the lower yields (Entry 22–24, Table 1). It is very interesting to notice that relatively high yield (87%) could still be obtained even under Ar atmosphere (Entry 25, Table 1). Under the optimal conditions, the reaction couldn't take place in the absence of [RhCp*Cl₂]₂ (Entry 26, Table

With the optimized conditions established, we explored the reaction of various internal alkynes. As can be seen from Scheme 1,2-phenylimidazo[1,2-a]pyridine could react smoothly with symmetrical diaryl alkynes in high yields (3aa-3ae, Scheme 1). The symmetrical diaryl alkynes with electron-withdrawing groups at the para position of the phenyl ring seemed more reactive than those bearing electron-donating groups, affording slightly higher yield (3ab, 88% vs 3ad, 80%; and 3ac, 97% vs 3ae, 84%). A few unsymmetrical diaryl alkynes were also employed to the reaction, and a moderate to high yields were observed (3af/3af' 79%, 3ag/3ag' 80%, 3ah/3ah' 90%). The ratio of two regioisomeric products was 1:1 from the ¹H NMR spectroscopic analysis. It indicates that different substituents on the unsymmetrical diaryl alkynes did not influence on the regioselectivity of the products (3af-3ah, Scheme 1). Unfortunately, alkyl-substituted alkynes could not work well in the system and poor yields were achieved (data not shown).

1). It implies that [RhCp*Cl₂]₂ plays as the catalyst in the cata-

Subsequently, we paid our attention to using diverse substituted 2-phenylimidazo[1,2-*a*]pyridines in the annulation with diaryl alkynes. The results were exhibited in Scheme 2. Imidazo[1,2-*a*]pyridines rings bearing electron-donating groups could react with diphenylacetylene very well (**3ba** 92%, **3ea** 96%, and **3ha** 94%, Scheme 2). The yields of target products were decreased from 79% to 28% when electron-withdrawing groups such as F, Cl were introduced to imidazo[1,2-*a*]pyridine rings (**3ca** 79% and **3da** 28%, Scheme 2). On the other hand, when electron-donating groups such as Me, and MeO were incorporated into phenyl ring, increased yields were observed for most substrates (**3ea**, 96% vs **3ba**, 92%; **3fa**, 91% vs **3ca**, 79%; **3ga**, 32% vs **3da**, 28%; and **3ea**, 94% vs **3ba**, 92%, Scheme 2).

With previous results in hand, the coupling reaction of 2arylimidazo[1,2-*a*]pyridine bearing electron-donating groups with

^b Isolated yield.

^c Under Ar.

^d 90 °C.

^h Co(OAc)₂·4H₂O (25 mol %).

ⁱ Co(OAc)₂·4H₂O (50 mol %).

Download English Version:

https://daneshyari.com/en/article/5214411

Download Persian Version:

https://daneshyari.com/article/5214411

Daneshyari.com