

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Catalytic multicomponent thiomethylation of aliphatic 1,3-diketones as efficient one-pot synthesis of novel bis(1,3-diketone-2-ylmethylsulphanyl)alkanes

Vnira R. Akhmetova ^{a,*}, Nail S. Akhmadiev ^a, Zoya A. Starikova ^b, Arthur R. Tulyabaev ^a, Ekaterina S. Mescheryakova ^a, Askhat G. Ibragimov ^a

^a Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation

ARTICLE INFO

Article history: Received 26 February 2015 Received in revised form 10 July 2015 Accepted 20 July 2015 Available online 26 July 2015

Keywords: Multicomponent thiomethylation reaction Lewis acid catalysis Tandem catalyst NiCl₂· 6H₂O—Me₃N(C₁₆H₃₃) Br (HDTMAB) Cp₂Zr(Ti)Cl₂-BuONa 1,3-Diketones

ABSTRACT

A catalytic method for the selective synthesis of novel bis(1,3-diketone-2-ylmethylsulfanyl)alkanes via the thiomethylation reactions of aliphatic 1,3-diketones with CH₂O and α , ω -dithiols is provided. Selective cyclothiomethylation of 1-phenylbutane-1,3-dione has been realized using a tandem catalyst Cp₂Zr(Ti)Cl₂-BuONa to form 6-benzoyl-1,4-dithiepane. Proposed mechanisms of catalytic thiomethylation reactions are also discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

 α,ω -Dithiols

Sulfur-containing carbonyl compounds are of interest as building blocks for fine organic synthesis¹ and polydentate ligands of coordination compounds using in supramolecular and polymer chemistry.² It's known that the alkylsulfanyl groups are formed in multicomponent reactions (MCRs) of NH-, OH-, SH- and CH-acids with formaldehyde and S-nucleophiles.³ Furthermore the thiomethylation of carbonyl-containing CH-acids can be implemented with the use of aldehydes, mercaptanes and various activators. These MCRs are realized in neutral-⁴a or alkaline medium⁴b,c and in the presence of different catalysts as well.⁴d-f It should be noted that MCRs, which minimize waste formation are worldwide trend in Green chemistry.⁵

Recently we have established that dimethyl malonate reacts as a CH-acid with $\rm CH_2O$ and 1,2-ethanedithiol in the presence of Lewis acids (5 mol%) to form 6,6-di(metoxycarbonyl)-1,4-

In order to study the scope of the multicomponent thiomethylation of 1,3-diketones in the one-pot synthesis of novel bis [(1,3-diketone-2-yl)methylsulphanyl]alkanes, we have investigated the reactivity of aliphatic and aromatic 1,3-diketones $\mathbf{1a}$ - \mathbf{g} . We used a 2:1 mixture of CH₂O and α , ω -dithiol HS(X)SH [X=(CH₂)₂-6, ((CH₂)₂S(CH₂)₂)] as thiomethylation agent, which forms in situ appropriate formaldehyde hemithioacetals $\mathbf{2a}$ - \mathbf{f} (Fig. 1).

Fig. 1. The structure of formaldehyde hemithioacetals 2a-f.

^bA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation

dithiepane in 70–80% yield,^{6a} while 2,4-pentandione reacts under these conditions to give open-chain 1,2-bis[(pentane-2,4-dione-3-yl)methylsulfanyl]ethane in 59% yield.^{6b}

^{*} Corresponding author. Tel./fax: +7 3472 842750; e-mail address: vnirara@gmail.com (V.R. Akhmetova).

2. Results and discussion

2.1. Multicomponent thiomethylation of aliphatic 1,3-diketones 1a—e

Using the thiomethylation reaction of 2,4-pentanedione 1a with ${\rm CH_2O}$ and 1,2-ethanedithiol as an example, we have examined methylene-activating Lewis and silica-alumina catalysts. In all experiments, 1,2-bis[(pentane-2,4-dione-3-yl)methylsulfanyl]ethane 4a was formed regioselectively (Scheme 1) with the yield dependent on the catalyst and solvent. Thus, MCRs effectively proceed at rt in chloroform/ethanol (1:1) media via interaction of diketone 1a with a preliminarily obtained mixture ${\rm CH_2O-1,2-ethanedithiol}$ (2:1) in the presence of 5 mol % BF $_3\cdot{\rm OEt_2}$ or BuONa (see Table 1).

Scheme 1. Synthesis of compounds 4a-f.

Table 1 The dependence of products 4a-f yield from thiomethylation condition of $1a^a$

Entry	α,ω-dithiols	Catalyst [M], (mol %)	Reaction duration, (h)	Reaction product	Yield, (%)
1	3 a	BF ₃ ·OEt ₂ (5)	6	4a	23
2	3 a	$BF_3 \cdot OEt_2 (5)^b$	6	4a	61
3	3 a	$BF_3 \cdot OEt_2(5)$	6	4a	81
4	3 a	$BCl_3(5)^c$	6	4a	76
5	3 a	FeCl ₃ (5)	6	4a	46
6	3 a	$FeCl_3 \cdot 6H_2O(5)$	6	4a	36
7	3 a	$CoCl_2 \cdot 6H_2O(5)$	6	4a	41
8	3 a	$NiCl_2 \cdot 6H_2O(5)^7$	6	4a	62
9	3 a	$CuCl_2 \cdot 6H_2O(5)$	6	4a	68
10	3 a	BuONa (5)	3	4a	87
11	3 a	Al ₂ O ₃ /SiO ₂ ⁸	6	4a	60
12	3 a	BuONa (100)	0.5	4a	97
13	3 a	$Ca(OH)_2$ (200)	1	4a	30
14	3 a	NaOH (100) ⁹	6	4a	64
15	3b	$BF_3 \cdot OEt_2(5)$	6	4b	80
16	3c	$BF_3 \cdot OEt_2(5)$	6	4 c	81
17	3d	$BF_3 \cdot OEt_2(5)$	6	4d	87
18	3e	$BF_3 \cdot OEt_2(5)$	6	4e	85
19	3f	$NiCl_2 \cdot 6H_2O(5)$	6	4f	68

^a Reaction conditions: formaldehyde (20 mmol), α , ω -dithiols ${\bf 3a-f}$ (10 mmol), 2,4-pentanedione ${\bf 1a}$ (20 mmol), solvent: CHCl₃: C_2H_5OH (1:1 volume), rt, under argon.

- $^{\bar{b}}$ The reaction was carried out in CH₂Cl₂.
- ^c The reaction was carried out in C₆H₁₄.

Applying this methodology, the thiomethylation of acetylacetone 1a with other agents (3a—f) has been performed selectively to obtain high-yield bis[(pentane-2,4-dione-3-yl)methylsulfanyl]alkanes 4a—e and 1,5-bis[(pentane-2,4-dione-3-yl)methylsulfanyl]-3-thiopentane 4f.

Analogously, MCRs of CH₂O and 1,2-ethandithiol **3a** (5 mol% BuONa) with other aliphatic 1,3-diketones, such as 3,5-heptanedione **1b**, 2,6-dimethyl-3,5-heptanedione **1c**, and 2,2,6,6-tetramethyl-3,5-heptanedione **1d**, leads to 1,2-bis[(1,3-diketone-2yl)methylsulfanyl]ethanes **5a–d** (see Scheme 2). Based on the product yield **4a** (87%), **5a** (85%), **5b** (79%) and **5c** (18%) the

R = R' = Et (5a); i-Pr (5b); t-Bu (5c)

Scheme 2. Catalytic thiomethylation of aliphatic 1,3-diketons 1b-d.

reactivity of examined aliphatic diketones was specified depending on steric factors and decreased in an order **1a**>**1b**>**1c**>**1d**.

Under the above optimized conditions, 1,3-cyclohexanedione 1e is less active in the reactions with CH₂O and 1,2-ethanedithiol (about 30% conversion). The yield of the target 1,2-bis[(cyclohexane-1,3-dione-3-yl)methylsulfanyl]ethane 6 can be raised to 60% when using a tandem catalyst -10 mol% NiCl₂·6H₂O-hexadecyltrimethylammonium bromide (HDTMAB) or NaOAc-HDTMAB at 70 °C (see Scheme 3, Table 2, entries 9–11).

Scheme 3. Catalytic thiomethylation of cyclohexane-1,3-dione 1e.

Table 2Catalyst effect on the yield of **6**^a

Entry	Catalyst [M], (mol %)	Solvent	Reaction duration, (h)	T	Yield, (%)
1	_	C ₂ H ₅ OH	18	70	16
2	$BF_3 \cdot OEt_2$ (5)	CH ₂ Cl ₂	18	70	_
3	BuONa (200)	CHCl ₃ : C ₂ H ₅ OH ^b	18	70	63
4	$NiCl_2 \cdot 6H_2O(5)$	CHCl ₃ : C ₂ H ₅ OH ^b	6	rt	37
5	$NiCl_2 \cdot 6H_2O(5)$	CHCl ₃ : C ₂ H ₅ OH ^b	18	70	21
6	NaOAc (10)	C ₂ H ₅ OH	6	70	58
7	Al_2O_3/SiO_2 (5)	C ₂ H ₅ OH	18	70	5
8	HDTMAB (10)	CH ₂ Cl ₂ : H ₂ O ^b	4	70	46
9	NaOAc+HDTMAB (10)	CH ₂ Cl ₂ : H ₂ O ^b	4	70	60
10	NaOAc+HDTMAB (10)	H_2O	4	70	56
11	$NiCl_2 \cdot 6H_2O + HDTMAB (10)$	CHCl ₃ : C ₂ H ₅ OH ^b	4	70	60

^a Reaction conditions: formaldehyde (20 mmol), 1,2-ethanedithiols **3a** (10 mmol), 1,3-cyclohexanedione **1e** (20 mmol), solvent, under argon.

NMR and X-ray studies of compound 4a confirmed that the enol tautomer is stable both in solution and the crystalline form. Compound 4a exists in solution apparently as a keto-enol mixture in 1:29 ratio, respectively that has been determined using ¹H NMR integral intensities of characteristic protons in C(O)-CH-C(O) group of keto tautomer (δ_H =3.89 ppm) and in O···H···O moiety of enol tautomer ($\delta_{\rm H}$ =16.74 ppm).¹⁰ It is noteworthy that ¹³C NMR resonances of the methylene units in both keto and enol forms are coincident (see ¹³C NMR assignments in Fig. 2). The carbonyl, methyne, and methyl carbon atoms of keto form give appropriate resonances at δ =202.0, 68.2, and 29.3, respectively, while carbonyl atoms and those carbons at the double bond of the enol form give peaks δ =191.8 and 106.2, respectively, and methyl carbon atoms resonate at δ =22.7 ppm. In addition, all the methyl protons of the tautomers are shown to undergo rapid exchange in NMR time scale, so that sharp and intensive ${}^{1}H$ signal at δ =2.27 ppm assigned to these protons was observable.

^b Solvents ratio (volumetric) 1:1.

Download English Version:

https://daneshyari.com/en/article/5214545

Download Persian Version:

https://daneshyari.com/article/5214545

<u>Daneshyari.com</u>