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It has been claimed that the particular numerical flux used in Runge-Kutta Discontinuous
Galerkin (RKDG) methods does not have a significant effect on the results of high-order
simulations. We investigate this claim for the case of compressible ideal magnetohydrody-
namics (MHD). We also address the role of limiting in RKDG methods.

For smooth nonlinear solutions, we find that the use of a more accurate Riemann solver
in third-order simulations results in lower errors and more rapid convergence. However, in
the corresponding fourth-order simulations we find that varying the Riemann solver has a
negligible effect on the solutions.

In the vicinity of discontinuities, we find that high-order RKDG methods behave in a sim-
ilar manner to the second-order method due to the use of a piecewise linear limiter. Thus,
for solutions dominated by discontinuities, the choice of Riemann solver in a high-order
method has similar significance to that in a second-order method. Our analysis of
second-order methods indicates that the choice of Riemann solver is highly significant,
with the more accurate Riemann solvers having the lowest computational effort required
to obtain a given accuracy. This allows the error in fourth-order simulations of a discontin-
uous solution to be mitigated through the use of a more accurate Riemann solver.

We demonstrate the minmod limiter is unsuitable for use in a high-order RKDG method.
It tends to restrict the polynomial order of the trial space, and hence the order of accuracy
of the method, even when this is not needed to maintain the TVD property of the scheme.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

To simulate compressible flows that contain shocks along with small-scale features such as turbulence, we require
numerical methods that are shock capturing, but also exhibit high-order accuracy and low numerical dissipation away from
shocks [1]. Runge-Kutta Discontinuous Galerkin (RKDG) methods are shock capturing and high-order accurate away from
discontinuities, thus they are a candidate method for carrying out such simulations.

Discontinuous Galerkin (DG) methods were first introduced by Hill and Reed [2] for the neutron transport equations
(linear hyperbolic equations). LeSaint and Raviart [3] proved a rate of convergence of O(Ax)* for general triangulations
and of O(Ax)"+1 for Cartesian meshes, where Ax is the element size and k is the polynomial order of the approximate solution.
In case of general triangulations, this result was then improved by Jhonson and Pitkaranta [4] to O(Ax)**'/2, which was

confirmed to be optimal by Peterson [5].
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These methods were then generalized for systems of hyperbolic conservation laws by Cockburn and co-workers [6-10]. In
space the solution is approximated using piecewise polynomials on each element. Exact or approximate Riemann solvers from
finite volume methods are used to compute the numerical fluxes between elements. Limiters are used to achieve non-
oscillatory approximate solutions, if they contain shocks [11]. For these reasons, DG methods can be seen as generalization
of finite volume methods to higher order. For time integration, the total variation diminishing (TVD) explicit Runge-Kutta
(RK) methods proposed by Shu and Osher [12] are used.

RKDG methods have many important advantages. Like finite element methods, RKDG methods are well suited for simu-
lating flows in complicated geometries. These methods can easily handle adaptivity strategies, because of the assumed dis-
continuity of the solution at element interfaces. This allows refining or unrefining of the triangulation to be done without
taking into account the continuity restrictions typical of conforming finite element methods. Similarly, the degree of the
polynomial approximation within an element can be changed without affecting the solution on other elements. Another
important advantage is that these methods are highly parallelizable because to update the solution on a given element, only
information from elements with which it shares a face is needed.

At present, it is believed that the particular numerical flux or Riemann solver used does not have a significant effect on the
results of high-order RKDG simulations [13]. Such a conclusion is supported by numerical evidence such as that shown in
Fig. 1. This figure shows the results of simulations of the MHD shock tube problem described in Section 4.1 with three dif-
ferent flux calculators (see Section 4 for descriptions), along with the exact solution to the problem. The results of first- and
second-order simulations are shown in Fig. 1(a) and (b), respectively. Comparing these results, it appears that the absolute
error in the numerical solution is far less sensitive to the choice of numerical flux when the second-order scheme is used.
This seems to indicate that as the order of a simulation increases, the choice of numerical flux becomes less significant. This
view has lead to the simple and highly dissipative Lax-Friedrichs (LF) flux being used within many RKDG methods [13]. Our
goal is to rigorously examine the effect of more accurate numerical flux calculators in high-order RKDG methods, with par-
ticular emphasis on high-order simulations featuring discontinuities. The influence of accurate flux calculators in high-order
RKDG methods is intimately tied to the performance of the limiters in the method. For this reason, we also examine the per-
formance of limiters in high-order simulations.

For the Euler equations, the effect of Riemann solvers has been previously evaluated by Qiu et al. [14]. One- and two-
dimensional numerical simulations were carried out to compare various Riemann solvers based on performance measures
such as numerical error, resolution of discontinuities and CPU times. The LF flux was shown to require the least CPU-time
among all the fluxes that were compared, but it also produced the largest numerical errors. Whereas second-order fluxes
such as Lax-Wendroff (LW) and Warming-Beam (WB) were found to be unstable. The Harten, Lax and van Leer (HLL)
[15], HLLC [16] and MUSTA [17] fluxes were proposed as good choices for RKDG simulations. However, the data generated
was not correlated to demonstrate which scheme is the most computationally efficient, or if the benefits of using more accu-
rate Riemann solvers are dependent on the order of accuracy. In addition, error norms were only computed for a smooth
linear problem, while we anticipate that the use of accurate Riemann solvers will be most significant in discontinuous non-
linear problems.

This report is organized as follows: in the next section we present the governing equations for the simulations. In Section
3 a brief description of the RKDG method is presented. In Section 4, a number of flux calculators for ideal MHD are tested,
leading to the selection of appropriate flux calculators for use in the RKDG method in different circumstances. The limiters
used within the RKDG method are described and tested in Section 5. The results of numerical test cases are presented and
analyzed in Section 6. Finally, the conclusions that have been drawn from this work are presented in Section 7.
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Fig. 1. Density profiles at t = 0.4 from (a) first-order and (b) second-order accurate simulations of the MHD shock tube problem described in Section 4.1.
The exact solution to the problem is shown along with numerical results using the LF, HLLE and Roe fluxes described in Section 4.
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