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a b s t r a c t

The fluid dynamic equations are discretized by a high-order spectral volume (SV) method
on unstructured tetrahedral grids. We solve the steady state equations by advancing in
time using a backward Euler (BE) scheme. To avoid the inversion of a large matrix we
approximate BE by an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm.
The implicit method addresses the stiffness in the discrete Navier–Stokes equations asso-
ciated with stretched meshes. The LU-SGS algorithm is then used as a smoother for a p-
multigrid approach. A Von Neumann stability analysis is applied to the two-dimensional
linear advection equation to determine its damping properties. The implicit LU-SGS
scheme is used to solve the two-dimensional (2D) compressible laminar Navier–Stokes
equations. We compute the solution of a laminar external flow over a cylinder and around
an airfoil at low Mach number. We compare the convergence rates with explicit Runge–
Kutta (E-RK) schemes employed as a smoother. The effects of the cell aspect ratio and
the low Mach number on the convergence are investigated. With the p-multigrid method
and the implicit smoother the computational time can be reduced by a factor of up to 5–10
compared with a well tuned E-RK scheme.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Spatially high-order accurate numerical schemes are being developed for use in a variety of flow problems. In Computa-
tional Fluid Dynamics (CFD), they are being used for Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), Com-
putational Aeroacoustics (CAA), turbulent combustion etc. where the accurate resolution of small scales is required. In
addition, since CFD is increasingly used as an industrial design and analysis tool, it requires unstructured grids for efficient
meshing. High-order accuracy must therefore be achieved on unstructured grids. Discontinuous Galerkin (DG) schemes [1–
5], Residual Distribution (RDS) [6] and the more recently developed Spectral Volume (SV) [7–15] and Spectral Difference (SD)
[17–19] schemes are especially suited for these purposes.

However, when high-order schemes are combined with classical solution methods, such as explicit Runge–Kutta (E-RK)
solvers, they suffer from a restrictive CFL condition and hence a relatively slow convergence rate. In addition to this, the sol-
ver must also be able to deal with the geometrical stiffness imposed by the Navier–Stokes grids where high-aspect ratios
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occur near walls. In the case of compressible solvers there is an additional stiffness when solving for low speed flows caused
by the disparate eigenvalues of the system.

High-order schemes possess less numerical dissipation than the lower-order ones. Consequently, it takes an excessive
amount of CPU-time to reach a steady-state solution with explicit solvers. Therefore, efficient solvers are needed to fully ful-
fill the potential of high-order methods. Implicit time-integration schemes can be used to deal with these problems. These
schemes can advance the solution with significantly larger time-steps compared to explicit methods. However, they may be
more expensive than explicit schemes if the algebraic solver employed is not efficient. Recently, there has been some re-
search on implicit Runge–Kutta (I-RK) schemes [20,21]. In Bijl et al. [20], I-RK solvers were investigated in combination with
a standard cell-centered finite volume scheme with artificial dissipation added for stability. It was observed that significant
potential improvements in the temporal efficiency of implicit schemes could be achieved from algebraic solver develop-
ments. In [21] the convergence of an E-RK scheme with h-multigrid was accelerated by preconditioning with a fully implicit
operator and the resulting RK/Implicit Residual scheme was used as a smoother for an h-multigrid algorithm. It was dem-
onstrated that the implicit preconditioner reduced the computational time of a well tuned E-RK scheme by a factor between
4 and 10. Both studies [20,21], concluded that solver improvements can be more dramatic than improvements in integration
techniques.

Another indispensable tool for efficiency is the multigrid algorithm. In the traditional h-multigrid approach, efficiency is
achieved by switching to coarser spatial grids. In a p-multigrid algorithm, a high-order solution representation is transferred
to a lower-order one and the multigrid algorithm uses iterations on sequences of different solution representations instead
of different grids. Essential for efficiency is that the solver is a good smoother of high-frequency error components and this
should also hold for high-aspect ratio grids.

In the present study we combine a SV discretization in space and an implicit lower–upper symmetric Gauss–Seidel (LU-
SGS) in (pseudo) time. This is accelerated by a full p-multigrid strategy. The LU scheme was started by Jameson and Turkel
[22] and later reformulated to use symmetric Gauss–Seidel by Jameson and Yoon in the context of second-order central
schemes [23]. It was recently rediscovered by Sun et al. [24] and adapted for use with SD schemes. In Parsani et al. [27]
it was coupled with the SV scheme and a full p-multigrid algorithm. Here, the LU-SGS algorithm with the backward Euler
method is evaluated both with analysis and computation. The damping properties of the implicit method are evaluated with
a Von Neumann stability analysis for a model 2D linear advection equation. In [25,26] this analysis was applied to implicit
schemes on Cartesian grids for classical upwind and central schemes. In the present work the analysis is on triangular grids
defined by a generating pattern, and for high-order SV schemes.

The implicit LU-SGS scheme is used to solve the two-dimensional steady laminar flows over a cylinder and a NACA0012
airfoil at low Mach number. For the two cases the order of the SV scheme is restricted to 2 because of the curved boundaries.
Currently a first-order interpolation is used for the boundary shape. High-order schemes, would require a more accurate
interpolation, especially on the relatively coarse grids that are being used in combination with high-order schemes [13].

The convergence behavior and the computational effort of the implicit LU-SGS algorithm is compared with that of a fam-
ily of optimized E-RK smoothers used in Van den Abeele et al. [14]. The influence of the mesh aspect ratio and the low Mach
number is investigated and the solutions are compared with experimental and numerical results found in the literature. For
the NACA0012 airfoil test case the convergence behavior of the LU-SGS solver is compared with that of RK/Implicit Residual
scheme used in [21]. The latter code is second-order accurate in space and uses a finite volume approach with quadrilateral
cells on structured grids.

The remainder of this article is organized as follows. A brief summary of the SV method is given in section 2. In Section 3,
the p-multigrid algorithm is described with the definition of a general restriction operator [27]. In Section 4, the explicit Run-
ge–Kutta schemes (E-RK) are described. In Section 5, the implicit LU-SGS with backward Euler (BE) scheme is discussed. A
Von Neumann stability analysis for the LU-SGS with backward Euler method and for a general SV schemes on triangular grids
is described in Section 6. Section 7 shows the stability analysis’ results for the second-order SV scheme. Section 8 deals with
the numerical test cases, before finally drawing conclusions in Section 9.

2. Spectral volume method

The spectral volume (SV) method is used to solve conservation laws (1)

@W
@t
þr � F Wð Þ ¼ 0; ð1Þ

where W is the state vector of conservative variables and FðWÞ is the flux density tensor.
The computational domain V is divided in NSV cells Vi, called spectral volumes, with volume jVij. Each SV is further sub-

divided into control volumes (CV) Vi;j. Integrating Eq. (1) over such a CV and applying the Gauss theorem gives

@

@t
Wi;j V i;j

�� ��� �
¼ �

Z
@Vi;j

F � ds ¼ Ri;j; ð2Þ

where jVi;jj is the volume of Vi;j;Ri;j is the residual corresponding to Vi;j and Wi;j is the CV average defined by
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