ARTICLE IN PRESS

Tetrahedron xxx (2015) 1-5

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of aryl nitriles by palladium-assisted cyanation of aryl iodides using *tert*-butyl isocyanide as cyano source

Xiao Jiang^a, Jin-Mei Wang^a, Ying Zhang^a, Zhong Chen^a, Yong-Ming Zhu^a,*, Shun-Jun Ji^b

^a College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China

^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

A R T I C L E I N F O

Article history: Received 18 March 2015 Received in revised form 15 April 2015 Accepted 18 April 2015 Available online xxx

Keywords: Palladium-catalyzed synthesis Cyanation tert-Butyl isocyanide Aryl nitriles Aryl iodides

ABSTRACT

A palladium-catalyzed synthesis of aryl nitriles by the cyanation of aryl iodides with *tert*-butyl isocyanide as cyano source has been developed. This novel and efficient method avoids the use of toxic cyanides. The reaction is easy-to-handle and shows good functional group compatibility.

© 2015 Elsevier Ltd. All rights reserved.

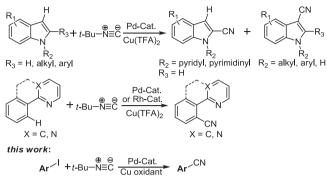
Tetrahedror

1. Introduction

Aryl nitriles are an integral part of many natural products, pharmaceuticals, agrochemicals, herbicides, pigments, and dyes.¹ In addition, they are easily transformed into other functional groups, such as amines, acids, amides, aldehydes, and heterocycles.² As a result, a number of methods to introduce cyano group to aromatic ring have been developed. Of these transformations, transitionmetal-catalyzed cyanation of aryl halides^{2e} or aromatic C–H bond activation was an elegant route to benzonitriles (Scheme 1). However, typical protocols utilized toxic cyanides (e.g., Cu(CN)₂,³ Zn(CN)₂,⁴ NaCN, and KCN⁵), CH₃NO₂,⁶ acetone cyanohydrin,⁷ cyanogen halides,⁸ TMSCN,⁹ N-cyano-N-phenyl-para-toluenesulfonamide (NCTS),¹⁰ and aryl(cyano)iodonium triflates (DFCT)¹¹ as cyanating agents. Low toxic CN source was thus highly desired. K₄[Fe(CN)₆] was first used by Beller and co-workers to introduce CN into organic molecules.¹² Recently, other CN sources such as ammonium salts or organic amine/DMSO,¹³ DMF,¹⁴ formamide,^{14f,g} ethyl cyanoacetate,^{15a} benzyl cyanide,^{15b-d} CuSCN,¹⁶ NaN₃,¹⁷ NH₃, and tert-butyl nitrite (TBN)¹⁸ have been demonstrated to deliver nitriles. However, poor functional group tolerance and maneuverability restricted their application.

Scheme 1. Approaches to aryl nitriles.

Isocyanides, which are well known as isoelectronic equivalent of CO, are powerful C₁ building blocks in organic synthesis since the pioneer work of Passerini and Ugi.¹⁹ Palladium-catalyzed isocyanide insertion has been widely applied in the synthesis of nitrogenous compounds.²⁰ Our group has successfully constructed C–O, C–C, C–N and aldehydes via metal-catalyzed isocyanide insertion into C-X bonds.²¹ Nevertheless, the use of isocyanides as a cyano source has been less explored.²² Palladium-catalyzed direction C–H cyanation of phenylindole and phenylpyridine was only reported by Xu and Zhu.^{22e–g} However, those reactions limit the scope to electron-rich and regioselective nitrogen-containing indoles or 2-phenylpyridine derivatives. Herein, for further broadening the application of isocyanides as CN source in the


^{*} Corresponding author. Fax: +86 512 67166591; e-mail address: zhuyongming@ suda.edu.cn (Y.-M. Zhu).

2

X. Jiang et al. / Tetrahedron xxx (2015) 1-5

synthesis of aromatic and heteroaromatic nitriles, we describe an efficient palladium-catalyzed cyanation of aryl iodides using tertbutyl isocyanide as CN source (Scheme 2).

previous work: only indoles or 2-phenylpyridine derivatives with 28%-92% yields

Scheme 2. Cyanation using isocyanide as CN source.

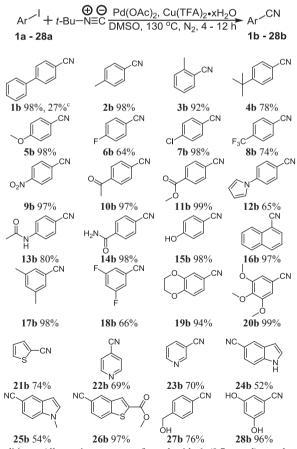
2. Results and discussion

Our investigation began with examining the reaction of 4phenyliodobenzene and t-BuNC (1.2 equiv) utilizing Pd(OAc)₂ (5 mol %) as catalyst, copper(II) trifluoroacetate hydrate (3 equiv) as oxidant and Na₂CO₃ (1 equiv) as base at 130 °C. To our delight, 4phenylbenzonitrile was produced in 46% yield in DMF under N₂ for 12 h (Table 1, entry 1). In the presence of 3 equiv of t-BuNC, completed conversion was achieved under 2 equiv of Cu(T-FA)₂·xH₂O and the yield was increased to 83% (Table 1, entry 2). Base had no significant effect on this reaction (Table 1, entry 3 and

Table 1

Ph $+ t$ -Bu-N \equiv C $+ t$ -Bu-N = C + t-Bu-N \equiv C $+ t$ -Bu-N = C + t-Bu-N = C +						
	1a					1b
Entry	Catalyst	Oxidant	Additive	Solvent	Temp (°C)	Yield ^b (%)
1	Pd(OAc) ₂	Cu(TFA)2·xH2O	Na ₂ CO ₃	DMF	130	46 ^c
2	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	Na_2CO_3	DMF	130	83
3	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	Cs ₂ CO ₃	DMF	130	82
4	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	NaHCO ₃	DMF	130	84
5	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	_	DMF	130	76
6	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	130	98
7	$Pd(OAc)_2$	Cu(TFA) ₂ ·xH ₂ O	_	toluene	130	35
8	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	_	dioxane	120	28
9	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	110	59
10	PdCl ₂	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	130	93
11	$Pd(TFA)_2$	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	130	95
12	$Pd_2(dba)_3$	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	130	92
13	_	$Cu(TFA)_2 \cdot xH_2O$	_	DMSO	130	86
14	$Pd(OAc)_2$	_	_	DMSO	130	trace ^d
15	$Pd(OAc)_2$	AgTFA	_	DMSO	130	23
16	$Pd(OAc)_2$	CuCl ₂	_	DMSO	130	45
17	$Pd(OAc)_2$	$Cu(OAc)_2$	_	DMSO	130	38
18	$Pd(OAc)_2$	$Cu(NO_3)_2 \cdot 2.5H_2O$	_	DMSO	130	87
19	$Pd(OAc)_2$	CuSO ₄	_	DMSO	130	59
20	$Pd(OAc)_2$	CuSO ₄ ·5H ₂ O	_	DMSO	130	76
21	$Pd(OAc)_2$	$Cu(TFA)_2 \cdot xH_2O$	$CaCl_2$	DMSO	130	51
22	$Pd(OAc)_2$	CuCl ₂	H_2O	DMSO	130	52
23	$Pd(OAc)_2$	$Cu(TFA)_2\!\cdot\!xH_2O/O_2$	_	DMSO	130	trace ^e
24	$Pd(OAc)_2$	Cu(TFA) ₂ ·xH ₂ O	_	DMSO	130	18 ^f

^a Conditions: All reactions were performed with 1a (0.7 mmol), tert-butyl isocyanide (3 equiv), catalyst (5 mol %), oxidant (2 equiv), and additive (1 equiv) in 2.5 mL of solvent under nitrogen for 12 h in a sealed tube unless otherwise noted. Isolated yield.


tert-Butyl isocyanide (1.2 equiv), oxidant (3 equiv).

^d With DPPP (10 mol %).

- Performed with 10 mol % of oxidant under O₂.
- ^f Cyclohexyl isocyanide (3 equiv).

4). Both of 76% yield of the corresponding benzonitrile and 4phenylbenzaldehyde were obtained in absence of base, which might be attributed to the solvent DMF (Table 1, entry 5). Solvent screening showed that DMSO was better than other non-polar solvents in the reaction (Table 1, entries 6–8). Lower temperature led to decrease in the yield of desired product (Table 1, entry 9). Compared to other palladium catalysts such as PdCl₂, Pd(TFA)₂, and $Pd_{2}(dba)_{3}$, $Pd(OAc)_{2}$ gave better result (Table 1, entries 10–12). The absence of Pd(OAc)₂ decreased the yield of the product (Table 1, entry 13), and trace amounts of the desired product was produced without Cu(TFA)₂·xH₂O (Table 1, entry 14). With using CF₃COOAg as oxidant, only 23% yield was got (Table 1, entry 15). Different Cu(II) oxidants were tested (Table 1, entries 16-20). And we observed that the presence of H₂O promoted this reaction (Table 1, entries 16, 19, and 20-22). When the reaction was run with 10% of $Cu(TFA)_2 \cdot xH_2O$ under O_2 , no desired product was detected (Table 1, entry 23). However, attempt to utilize other isocyanides such as cyclohexyl isocyanide was not successful (Table 1, entry 24). Thus, the optimized reaction conditions was aryl halide (1 equiv), tertbutyl isocyanide (3 equiv), Pd(OAc)₂ (5 mol %), and Cu(TFA)₂·xH₂O (2 equiv) in DMSO at 130 $^{\circ}$ C under N₂ atmosphere.

Next we explored the scope and limitation of the new protocol (Scheme 3). Only 27% yield of nitrile was obtained when using 4bromobiphenyl (Scheme 3, 1b). Both electron neutral (Scheme 3, 1b-5b, 15b, 16b, 17b, 19b, and 20b) and electron deficient (Scheme 3, 6b–14b, and 18b) aryl iodides were transformed to the desired aryl nitriles smoothly with 64%-99% yields. Steric hindrance has a slight effect on the reaction (Scheme 3, 2b and 3b). Various of

^a Conditions: All reactions were performed with 1 (0.7 mmol), tert-butyl isocyanide (3 equiv), Pd(OAc)₂ (5 mol %), Cu(TFA)₂·xH₂O (2 equiv) and DMSO (2.5 mL) under nitrogen at 130 °C for 4-12 h in a sealed tube unless otherwise noted. ^b Isolated yield. ^c 4-Bromobiphenyl.

Scheme 3. Synthesis of aryl nitriles.^{a,b}

Download English Version:

https://daneshyari.com/en/article/5214721

Download Persian Version:

https://daneshyari.com/article/5214721

Daneshyari.com