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pose only a Cauchy problem, and hence is ill-posed. However, we are still able to solve it
numerically on a long enough time interval to be of practical use. We used two approaches.
The first approach is a finite difference time-marching numerical scheme inspired by the
Lax-Friedrichs method. The key features of this scheme is the Lax-Friedrichs averaging

Iéﬁji/;:;)crf[:m and the wide~stenci1 in space. The second approach is a spectra; Chebyshey method with
Cauchy problem truncated series. We show that our schemes work because of (i) the special input corre-
lll-posed sponding to a positive finite seismic velocity, (ii) special initial conditions corresponding
Seismic velocity to the image rays, (iii) the fact that our finite-difference scheme contains small error terms
Dix inversion which damp the high harmonics; truncation of the Chebyshev series, and (iv) the need to
Time migration compute the solution only for a short interval of time. We test our numerical schemes on a
Image rays collection of analytic examples and demonstrate a dramatic improvement in accuracy in
Geometrical spreading the estimation of the sound speed inside the Earth in comparison with the conventional
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Dix inversion. Our test on the Marmousi example confirms the effectiveness of the
proposed approach.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the present work we derive and study a non-linear elliptic PDE for seismic velocity estimation from time migration. The
physical setting allows us to pose only a Cauchy problem and this is ill-posed. Nonetheless, because this PDE provides an
inexpensive way to estimate the sound speed inside the Earth, an attempt to provide some sort of solution is worthwhile.
We begin with a short overview.

Seismic data are the records of the sound wave amplitudes P(S, G, t) where S is the source position, G is the receiver posi-
tion, and t is the time. Seismic reflection imaging can be viewed as a procedure of obtaining the amplitude at the subsurface
point (x,y,z) from the data points (S, G, t), where (x,y,z) = R is the reflection point of the ray path from the source S to the
receiver G (see Fig. 1).
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Fig. 1. The raypath between the source S, the reflection point R and the receiver G; the image ray from the reflection point R and the time and depth
coordinates of the point R.

To obtain an accurate image at the reflection point R = (x,y, z), one needs to sum up all of the recorded responses from the
point R in the data domain with certain weights. Such a weighted summation of the amplitudes in the data domain is the
essence of the so-called Kirchhoff prestack depth migration [30]. In order to extract the responses from every single reflection
point from the set of the recorded data, one needs to know the traveltimes from every source S to every reflection point
R = (x,y,z) and from every reflection point R to every receiver G. For computing such traveltimes, one needs to have a velocity
model in depth v(x,y,z), i.e, the speed of the propagation of the seismic waves inside the earth. We call such a model seismic
velocity. In the case of an isotropic seismic velocity, one can solve the eikonal equation
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to find the desired traveltimes.

The major problem of seismic imaging is that such a velocity model is hard to build. A number of powerful automatic
velocity estimation methods have been proposed. This includes reflection tomography [29], stereotomography [14], migra-
tion velocity analysis [26,27], and differential semblance optimization [25]. However, these methods typically involve con-
siderable computational expense and rely on a good initial approximation. Numerical studies of the well-known Marmousi
data [28] demonstrate that, in the absence of a good initial guess, none of the modern approaches are fully reliable. The ap-
proach which this paper is concerned with is computationally cheap and requires no initial guess. It can provide an initial
guess for the approaches listed above.

In [3] we formulated an inverse problem of finding the seismic velocities from the so-called “Dix velocities”, and showed
that it is ill-posed in the sense that small perturbations in the Dix velocity may lead to big changes in the seismic velocity.
Nevertheless, in that paper we also attempted a regularized reconstruction and developed two numerical approaches to
solve the problem. Since the estimated seismic velocity was used in the depth migration, only for the computation of the
traveltimes, and was not used for the delineation of the subsurface reflectors, smoothing of the velocity model did not lead
to significant errors.

The key problem in these approaches hinged on the estimation of the second derivatives of the unknown velocity. We
used a least squares polynomial approximation to regularize the solution. However, choosing the degree of the least squares
polynomials was sensitive. If the degree was too high, oscillations developed; if it was too low, the solution was inexact.

In this work, we develop novel inversion methods which involve neither the least squares polynomial approximation nor
ray tracing. Our results include the following:

o In the theoretical part, we derive a partial differential equation for Q which is the geometrical spreading of image rays [11],
and involves only the Dix velocity and its derivatives with respect to the starting surface points and time. This reformu-
lated PDE reveals the nature of the instabilities in the problem in hand. The PDE is elliptic, and the physical setting allows
us to pose only a Cauchy problem, which is known to be ill-posed. Furthermore, the fact that the PDE involves not only the
Dix velocity itself but also its first and second derivatives leads to high sensitivity to the input data. This makes the ill-
posedness analysis given in [3] unsurprising: a small perturbation of the Dix velocity can produce a significant corre-
sponding change in its second derivative, and can lead to a considerable change in the seismic velocity.

e Despite the fact that problem is ill-posed, we show that we are still able to find a way to compute the solution:

- First, we develop a finite difference time-marching numerical scheme and compute a solution on the required interval
of time. Our numerical scheme is motivated by the Lax-Friedrichs [15] method for hyperbolic conservation laws as a
building block.

- Second, we adjust a spectral Chebyshev method for the problem in-hand. We truncate the Chebyshev series to cut off
the growing high harmonics in this case.
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