ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Catalytic α -hydroxylation of ketones under CuBr $_2$ or HBr/DMSO systems

Hong-Liang Li, Xing-Lan An, Li-Shi Ge, Xiaoyan Luo*, Wei-Ping Deng*

Shanghai Key Laboratory of New Drug Design & School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China

ARTICLE INFO

Article history: Received 16 February 2015 Received in revised form 23 March 2015 Accepted 30 March 2015 Available online 2 April 2015

Keywords: α -Hydroxyketones $CuBr_2$ HBr DMSO

ABSTRACT

An efficient and facile α -hydroxylation of ketones catalyzed by CuBr $_2$ or HBr in DMSO is developed, providing secondary/tertiary α -hydroxy carbonyl compounds in moderate to good yields (up to 87%). A series of control experiments suggested that water and DMSO may work cooperatively in the hydrolysis step. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

α-Hydroxyketones are not only important constituents of many biologically active natural products but also served as intermediates in some important organic transformations. Therefore, a number of methods have been developed for the preparation of α -hydroxy ketones moieties. Among them, the most frequently used methodologies are the oxidation of the enolates or silvl enol ethers compounds with metal oxidants² (i.e., thallium(III) acetate, oxone, osmium tetroxide), hypervalent iodine compounds,³ peroxide,4 oxaziridine.5 With regard to ecological and economical concerns, the direct α-hydroxylation of carbonyl compounds with molecular oxygen catalyzed by metal salts is the ideal of choice.⁶ Ritter and co-workers have developed an elegant site-specific α hydroxylation reaction of carbonyl compounds using a dinuclear Pd(II) complex as a catalyst and molecular oxygen as an oxidant, affording tertiary α -hydroxycarbonyl compounds.⁷ Of particular note is the elegant work of Jiao and co-workers, in which an efficient approach of α-hydroxylation of carbonyl compounds with Cs₂CO₃/P(OEt)₃/O₂ system was found to give tertiary α-hydroxycarbonyl compounds without any transition-metal catalysts.⁸ However, this method is limited to tertiary Csp³–H bond substrates and requires 2 equiv of P(OEt)₃ as reducing agent. Moreover, it was reported that the direct oxidation of enolizable ketones using 2-alkylidene-4-oxothiazolidine vinyl bromide as a catalyst in DMSO allows the introduction of a secondary or tertiary hydroxy group via $\alpha\text{-bromination}$ and hydrolytic step. 10 Herein, we would like to describe full details of our elaborative experiments on a CuBr $_2$ or HBr/DMSO catalyzed facile $\alpha\text{-hydroxylation}$ of ketones, and water and DMSO was proposed to work jointly for the formation of $\alpha\text{-hydroxycarbonyl}$ compounds.

2. Results and discussion

Recently, MacMillan reported an efficient α-amination of ketones catalyzed by copper(II) bromide in DMSO.¹¹ On the other hand, α-halogenated ketones could be hydrolyzed to the corresponding α -hydroxyketones under strong polar aprotic solvent ¹² or oxidized to the 1,2-diketone compounds in the DMSO system. 10,13,14 Inspired by these elegant works, we envisaged that a similar CuBr₂ catalytic system would be also applicable to a α -hydroxylation of ketones. We then began our investigation by using propiophenone (1a) as model substrate to perform the α -hydroxylation in the presence of CuBr₂ (10 mol %) in DMSO at room temperature under an air atmosphere, which is an optimal reaction condition from MacMillan's work. Unfortunately, no expected α -hydroxyketones was observed (Table 1, entry 1). To our delight, raising the reaction temperature to 90 °C, the desired α-hydroxylation product **2a** was obtained in 65% yield (Table 1, entry 2). Screening of various of copper salts turned out that CuBr2 was the most suitable catalyst (Table 1, entries 2-5). Interestingly, adding 30 mol % lithium bromide to the Cu(ClO₄)₂ reaction system, the reaction proceeded to give corresponding product 2a in 28% yield, presumably due to the in situ formation of CuBr2 (Table 1, entries 5-6). Screening of

^{*} Corresponding authors. Tel./fax: +86 021 6425 2431; e-mail addresses: xyluo@ecust.edu.cn (X. Luo), weiping_deng@ecust.edu.cn (W.-P. Deng).

Table 1 Initial studies toward α -hydroxylation of ketones^a

Entry	Metal	Solvent	Temp (°C)	Yield ^b
1	CuBr ₂	DMSO	rt	0
2	CuBr ₂	DMSO	90	65
3	CuCl ₂	DMSO	90	5
4	CuBr	DMSO	90	0
5	$Cu(ClO_4)_2$	DMSO	90	0
6 ^c	$Cu(ClO_4)_2$	DMSO	90	28
7	$CuBr_2$	DMF	90	Trace
8	CuBr ₂	Toluene	90	0
9	CuBr ₂	1,4-Dioxane	90	0
10	CuBr ₂	CH ₂ ClCH ₂ Cl	90	0
11	CuBr ₂	CH_3NO_2	90	0
12	CuBr ₂	Butanol	90	0
13 ^d	CuBr ₂	DMSO	90	63
14	HBr	DMSO	90	69
15 ^e	HBr	DMSO	90	82

Bold: optimized reaction conditions.

- $^{\rm a}$ Reaction conditions: 1a (0.5 mmol), catalyst (10 mol %), solvent (2 mL), air atmosphere, 9 h.
- b Isolated yield.
- ^c With 30 mol % LiBr.
- ^d With N₂ atmosphere.
- e 4 mL DMSO.

solvents, such as DMF, CH₃NO₂, and toluene instead of DMSO, gave no desired product (Table 1, entries 7-12). Furthermore, this reaction also proceeded smoothly under nitrogen, which indicated aerobic oxygen is not involved in this reaction (Table 1, entry 13, 63% yield). On the other hand, according to the reported mechanisms, ^{10,12} CuBr₂ could be converted directly into Br₂ or hydrolyzed into HBr followed by DMSO-mediated oxidation to form Br₂. With the well known chemistry properties of CuBr₂ and HBr/DMSO system, we speculated that the key catalyst for the CuBr₂-catalyzed α -hydroxylation of ketones could be the 'HBr'. Therefore, 10 mol % of HBr aqueous solution (40 wt%) was employed instead of CuBr₂. Expectedly, a slightly better yield of 2a was obtained (Table 1, entry 14, 69% yield). Further optimization by the use of 4 mL of DMSO gave an optimal result (Table 1, entry 15, 82% yield). Although, it is obvious that the HBr/DMSO system is more efficient than the CuBr₂/DMSO combination, it is still unclear if the copper itself involved in the α -hydroxylation process.

With optimized conditions in hand, we next investigated the scope and generality of this CuBr₂ or HBr/DMSO catalyzed α-hydroxylation of ketones as shown in Table 2. The scope of α -methylene carbonyls were first investigated. The various electron-rich (2a-b) and electron-poor (2c-h) aryl ketones all underwent a smooth transformation to form the corresponding α -hydroxyketones in moderate to good yields. The α-hydroxylation of heteroaromatic ketones can also proceeded smoothly, delivering α hydroxyketones in moderate yields (2i-j). *n*-Butyrophenone showed very similar reactivity to 2a under both CuBr₂ and HBr/ DMSO conditions (**2k**). Interestingly, for the all tried α -methylene carbonyls, the HBr/DMSO system showed relatively higher catalytic activities than the CuBr₂/DMSO system. Next, the scope of α methine carbonyls were investigated. The reaction of isobutyrophenone with 10 mol % CuBr₂ in DMSO at the temperature of 90 °C for 9 h yielded the tertiary α-hydroxyketone **21** in 68% yield, but raising the temperature to 110 °C increased the yield to 87%, which could be ascribed to the steric effect of bulkier α -methine substrate. Therefore, the following α -hydroxylation of other α methine substrates were carried out at 110 °C. To our delight, the substituted isobutyrophenones with electron-donating (2m-n) or electron-withdrawing (20-t) substituent on the phenyl ring and

Table 2 Scope of the α -hydroxylation of ketones^a

^aReaction conditions: ketone 0.5 mmol, catalyst 10 mol%, solvent 2 mL, air atmosphere, 9 h, 90 °C . The value in brackets is the isolated yield of the reaction with HBr (10 mol%) in DMSO (4 mL) for 12 h; The reaction temperature for α-methine carbonyls is 110 °C .

heteroaromatic isobutyrophenones ($2\mathbf{u}-\mathbf{v}$) were all compatible in this CuBr₂ or HBr/DMSO catlyzed α -hydroxylation. The hydroxylation of dicarbonyl compounds ($2\mathbf{w}$) could also proceed smoothly in moderate yields. Notably, unlike the cases of α -methylene substrates, the CuBr₂/DMSO system showed similar reactivities to the HBr/DMSO for the α -methine substrates, and even better yields were obtained in some cases ($2\mathbf{l}-\mathbf{n}$, $2\mathbf{p}$).

It is noteworthy that some ketones were reacted to give not only the corresponding α -hydroxyketones but also the byproduct by further transformation as shown in Scheme 1. For example, the reaction of cyclopentyl phenyl ketone **3a** yielded α -hydroxyketone 4a and dehydration product 4aa (CuBr₂/DMSO: 50% and 42%, respectively; HBr/DMSO: 62% and 33%, respectively). Benzyl phenyl ketone **3b** was found to be transformed to α -hydroxyketone **4b** and α-diketone **4ba** (CuBr₂/DMSO in 2 h: 44% and 22%, respectively; HBr/DMSO in 3 h: 56% and 23%, respectively), but prolongation of the reaction time to 9 h resulted in α -diketone **4ba** in almost quantitative yields under both reaction conditions. Moreover, the reaction of 1.1-diphenylacetone **3c** generated α -hydroxyketone **4c** and deacetylation product 4ca (CuBr₂/DMSO in 3 h: 35% and 60%, respectively; HBr/DMSO in 6 h: 44% and 47%, respectively) and the yield of 4ca could be increased dramatically (92% and 97% for both conditions, respectively) when the reaction time was prolonged to 9 h. To our surprise, the reaction of dibenzoylmethane 3d was found to produce 1,2-diketone 4ba in a high yield presumably through a decarbonylation pathway. In order to understand the reactivity of α -methylene and α -methine, two 2-aryl cyclohexanones **3e** or **3f** were chosen to perform the control experiments under both conditions. To our surprise, the reaction underwent smoothly in the presence of CuBr₂, however generating ketoacid 4e and **4f** instead of normal α -hydroxylation in good yields. Notably, the HBr/DMSO system gave no any desired product and the unexpected ketoacid. Therefore, we speculated that a direct coppercatalyzed oxidative C-C bond cleavage may occur. The further study on this unexpected reaction is underway in our laboratory.

Download English Version:

https://daneshyari.com/en/article/5214977

Download Persian Version:

https://daneshyari.com/article/5214977

<u>Daneshyari.com</u>