\$30 ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Molecular oxygen induced free radical oxythiocyanation of styrenes leading to α -oxothiocyanates

Kui Liu^a, Da-Peng Li^a, Shao-Fang Zhou^a, Xiang-Qiang Pan^{a,*}, Adedamola Shoberu^a, Jian-Ping Zou^{a,b,*}

- ^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
- b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

ARTICLE INFO

Article history: Received 24 February 2015 Received in revised form 15 April 2015 Accepted 18 April 2015 Available online 25 April 2015

Keywords: Difunctionalization Oxythiocyanation Radical reaction Styrenes α-Oxothiocyanates

ABSTRACT

A facile and efficient protocol of oxythiocyanation of styrenes with ammonium thiocyanate has been developed. The reaction proceeded at room temperature using oxygen as sole oxidant to afford the α -oxothiocyanates via radical pathway in moderate to good yields. This method is straightforward, green and cost-effective, requires no catalyst and additives.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Difunctionalization of alkenes has become a powerful tool in modern synthetic chemistry. The radical difunctionalization reaction has attracted more attention in recent years because of its mild conditions, high selectivity and convenient work-up.² α -Oxothiocyanates find wide application as intermediates in pharmaceuticals, chemicals, and material sciences.³ One of the most useful method for synthesis of α -oxothiocyanates is the thiocyanation of ketones promoted or catalyzed by I₂, FeCl₃, NBS, heteropolyacid and Cu (I,II).⁴ Thiocyanation of α -haloketones is an alternative way to α-oxothiocyanates.⁵ Nair and Badri groups both reported the synthesis of phenacylthiocyanates via the thiocyanation of styrenes promoted by excess of cerium(IV) ammonium ni-(CAN) and cis-1,4-bis(triphenylphosphonium)-2buteneperoxodisulfate (BTPBPD) at 0 °C, respectively. 6 In our previous paper, we reported a Mn(OAc)₃-mediated difunctionalization reaction involving the acetoxyphosphorylation of styrenes.⁷ This encouraged us to further search for more novel difunctionalization reactions. Herein, we report a free radical oxidative oxythiocyanation of styrenes in the presence of molecular oxygen leading to $\alpha\text{-}oxothiocyanates.}$

2. Results and discussion

At the initial stage, the reaction of styrene (1a, 1 equiv) with ammonium thiocyanate (2, 2 equiv) in the presence of air and Mn(OAc)₃ was conducted. The result showed that a mixture of oxythiocyanation (3a) and dithiocyanation products (4a) were obtained even when the amount of Mn(OAc)₃ was varied (Table 1, entries 1-4), although the yield of 4a decreased with decrease in Mn(OAc)₃ loading. Thus we concluded that the presence of Mn(OAc)₃ favors the formation of 4a, so the same reaction was performed in the absence of Mn(OAc)3. This time, the yield of 3a increased to 50%, but 4a was also isolated in 23% yield (Table 1, entry 5). In order to improve the selectivity of the reaction, the ratio of reactants and the reaction environment were screened. To our delight, as the ratio of styrene/ammonium thiocyanate was changed from 1:2 to 2:1 and the reaction being carried out in an oxygen atmosphere, the ratio of products 3a/4a changed from 50:23 to 79:0 (Table 1, entries 5–8). After screening the solvents, temperature, time and reaction environment (Table 1, entries 9–19), the optimal reaction conditions were determined to be: styrene (1a, 2.0 equiv), ammonium thiocyanate (2, 1 equiv) in acetic

^{*} Corresponding authors. Tel.: +86 512 65880336; fax: +86 512 65880335; e-mail address: jpzou@suda.edu.cn (J.-P. Zou).

Table 1Optimization of the reaction conditions^a

Entry	Oxidant	Solvent	Temp (°C)	Time (h)	Yiel	Yield %b	
					3a	4a	
1 ^c	Mn(OAc) ₃ (2 equiv)/air	HOAc	25	8	6	83	
2 ^c	Mn(OAc)3 (1 equiv)/air	HOAc	25	8	13	78	
3 ^c	Mn(OAc) ₃ (0.5 equiv)/air	HOAc	25	8	35	40	
4 ^c	Mn(OAc) ₃ (0.1 equiv)/air	HOAc	25	8	47	33	
5 ^c	Air	HOAc	25	8	50	23	
6 ^d	Air	HOAc	25	8	63	13	
7	Air	HOAc	25	8	73	5	
8	O_2	HOAc	25	8	79	0	
9	O_2	DMSO	25	8	27	0	
10	O_2	CH ₃ CN	25	8	33	0	
11	O_2	THF	25	8	17	0	
12	O_2	1,4-Dioxane	25	8	13	0	
13	O_2	Toluene	25	8	0	0	
14	O_2	CH ₂ CI ₂	25	8	0	0	
15	O_2	HOAc	0	8	15	0	
16	O_2	HOAc	50	8	30	0	
17	O_2	HOAc	25	4	35	0	
18	O_2	HOAc	0	12	60	0	
19 ^e	No	HOAc	0	12	0	0	

- ^a Styrene (2 mmol) and NH₄SCN (1 mmol).
- ^b Isolated yield.
- ^c Styrene (1 mmol) and NH₄SCN (2 mmol).
- d Styrene (1 mmol) and NH₄SCN (1 mmol).
- ^e The reaction was carried out in argon atmosphere.

acid at 25 °C in oxygen atmosphere for 8 h to afford the selective oxythiocyanation product (**3a**) in 79% yield (**Table 1**, entry 8).

Subsequently, the above optimal reaction conditions were applied to different styrene derivatives. We found that styrenes bearing electron-donating groups such as methyl on the phenyl ring gave the expected oxythiocyanation product 3 in good yields (Table 2, entries 2–4). However, methoxy substituted styrenes (1f and 1g) did not react with ammonium thiocyanate while 4acetoxystyrene (1h) was oxidized to 4-acetoxybenzoic acid (3h), the reason for these results remains unknown (Table 2, entries 5–7). On the other hand, the reaction of para-halogenated (F, Cl and Br) styrenes gave the products in slightly lower yields (57-66%, Table 2, entries 10, 13 and 14), while the ortho and meta-fluorinated styrenes afforded the products in even much lower yields (28–30%, Table 2, entries 8 and 9). It is noteworthy that styrenes bearing electron-withdrawing groups such as CF3 gave the oxythiocyanation product 3p in 16% yield (Table 2, entry15), while CN and NO₂ derivatives did not react at all (Table 2, entries 16-17). These results showed that the electron-withdrawing groups on the phenyl ring suppressed the reaction.

To determine the effect of α - or β -substituents of styrene on the reaction, CH₃ and Br substituted styrenes were employed (Scheme 1). No reactions were observed with α - and β -methylstyrenes (1s, 1t) and β -bromostyrene (1v), although α -bromostyrene (1u) gave the oxythiocyanation product 3a. 1t or 1v bearing β -CH₃ or β -Br group, which impeding the thiocyano radical attack make the reaction not to go. While 1u bearing α -Br group leading to form 3a can be rationalized on the premise that the Br• radical left during the course of the reaction, however, 1s with α -CH₃ group is unable to CH₃• radical left, thus leading to no reaction. Finally, nonconjugated terminal alkenes (1w-1x) were investigated but no reactions were observed. This might arise from both the low electron density of the unconjugated C=C double bond and the formed intermediate carbon radical instable. This revealed that conjugated

Table 2Reactions of styrenes (1) with ammonium thiocyanate (2)^a

1		3	
Entry	Styrene	Product	Yield(%) ^b
1	1 _a	SCN	3a (79)
2	1b	SCN	3b (78)
3	1c	SCN	3c (75)
4	1d	SCN	3d (80)
5	o If	SCN	3f N.D. ^c
6	o 1g	SCN	3g N.D. ^c
7	O Th	ОН	3h (30)
8 ^d	F	SCN	3i (28)
9 ^d	F	SCN	3j (30)
10 ^d	F 1k	SCN	3k (57)
11 ^d	CI	CI SCN	31 (68)
12 ^d	Cl 1m	CISCN	3m (42)
13 ^d	CI 1n	SCN	3n (66)
14 ^d	Br 10	SCN	3o (58)
15 ^e	F ₃ C	F ₃ C SCN	3p (16)
16 ^e	NC 1q	NC SCN	3q N.D ^c

Download English Version:

https://daneshyari.com/en/article/5215118

Download Persian Version:

https://daneshyari.com/article/5215118

Daneshyari.com