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1. Introduction

Pyrrole derivatives are important species with remarkable bi-
ological activities' and useful intermediates in the synthesis of
natural products and heterocycles.” Many methods for the syn-
thesis of pyrrole derivatives have been developed, which involve
conjugate addition,®> Hantzsch procedure,* 1,3-dipolar cycloaddi-
tion reaction,” transition metal-mediated cyclization,® aza-Wittig
reaction,’ titanium catalyzed hydroamination of diynes,® multi-
components reactions’ and other operations.'” Among them, the
Paal-Knorr reaction remains one of the most significant and simple
methods, which consists of the cyclocondensation of primary
amines with 1,4-diketones to produce N-substituted pyrroles.

Recently, many methods for the synthesis of pyrroles by Paal-
Knorr cyclization of primary amines with 1,4-diketones have been
developed in the presence of various Lewis acid catalysts, such as,
Ti(O'Pr)s,”” ZrOCly-8H20,'* Sc(OTf)3,”® Bi(NOs3)3-5H20,'® ZrCly,”
BiCl3/SiO,,'® InCl3,'° and FeCl3.”® Although, pyrroles can be ob-
tained by the aforementioned strategies, it is highly desirable to
develop methods that will overcome the inherent limitations, such
as harsh reaction conditions, poor substrate generality, and can
introduce a diverse substitution pattern into the heterocyclic core.
Therefore, the development of less expensive, environmentally
benign, and easily handled promoters for the synthesis of
N-substituted pyrroles by Paal-Knorr condensation under neutral,
mild, and convenient condition is still highly desirable. Magnesium,
a practically ideal main group metal, which abundantly exists in
nature, has been actively investigated as a catalyst in the field of
C—C bond formation and functional group transformation.?!

In our previous papers,”> we have demonstrated that Mgl,
etherate could efficiently catalyze the Mukaiyama aldol reaction
of aldehydes with trimethylsilyl enolates, allylation of aldehydes
with allylstannane, cycloaddition of isocyanates with oxiranes
and Clauson-Kass reaction of primary amines with 2,5-
dimethoxytetrahydrofuran. In continuation of our ongoing
research field, we wish to report a mild, efficient, and highly
chemoselective Paal-Knorr condensation of various primary
amines with 1,4-diketones catalyzed by 3 mol% Mgl, etherate
under solvent-free conditions.

2. Results and discussion

Initially, we have chosen aniline and 2,5-hexadione 1a (aceto-
nylacetone) as the model substrates for surveying the reaction
parameters in the model reaction. The results are summarized in
Table 1. By screening various solvents we have found that CH,Cl; is

the best solvent for this reaction (Table 1, entry 1). Moderate yields
were given in THF, MeCN, acetone and methanol (Table 1, entries
2-5). Very low yield was given in DMF (Table 1, entries 6). It is
worthy to be noted that this Paal-Knorr reaction was carried out
very efficiently under solvent-free conditions in a short time. Under
solvent-free condition, temperature has a remarkable effect on the
yield of compound 3a. The results showed that the yields were
improved by increasing the reaction temperature. The excellent
yield was given at 70 °C (Table 1, entry 9). However, the higher
temperature could not cause the obvious increase for the yield of
product (Table 1, entries 10—11). In addition, the reaction was car-
ried out sluggishly without catalyst under solvent-free condition
(Table 1, entry 12). To examine the halide anion effect, halogen
analogs of Mgl, etherate, MgBr, etherate, MgCly, Mg(ClO4), and
Mg(OTf), were compared under parallel reaction conditions, re-
spectively. The best result has been observed with Mgl etherate as
the catalyst (Table 1, entry 9). Good yield was given by using 3 mol %
of MgClO4 (Table 1, entry 13). MgCl, and MgBr; etherate are also
effective to this reaction and produced the moderate yields (Table 1,

Table 1
Optimization of reaction conditions for MgX,-catalyzed Paal-Knorr reaction®
0 Me
Me 3 mol% MgX, _—
+ Ph—NH, N—Ph
Me =
2a

e} Me

1a 3a
Entry Solvent Catalyst Temp (°C) Time (h) Yields (%)°
1 DCM Mgl,e(OEt;), 40 5 94
2 MeCN Mgl,e(OEt;), 70 5 75
3 THF Mgl,e(OEt,), 70 5 70
4 MeOH Mgl,e(OEt;), 65 5 78
5 Acetone Mgl,e(OEty), 55 5 60
6 DMF Mgl,e(OEt;), 70 5 20
7 None Mgl,e(OEt;), 30 1 70
8 None Mgl,e(OEt;), 50 1 76
9 None Mgl,e(OEt;), 70 1 96
10 None Mgl,e(OEt;), 920 1 89
11 None Mgl,e(OEt;,), 110 1 89
12 None None 70 5 48
13 None Mg(ClOy4); 70 2 85
14 None MgCl, 70 2 75
15 None MgBr,e(OEt,), 70 2 78
16 None Mg(OTf), 70 2 50

¢ The reaction was carried out by the condensation of aniline(5.0 mmol) and 2,5-
hexadione (6.0 mmol) in the presence of MgX, under the above reaction conditions.
b Isolated yield by silica gel flash chromatography.
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